Department of the Army
Pamphlet 73—-7

Test and Evaluation

Software Test
and Evaluation
Guidelines

Headquarters
Department of the Army
Washington, DC

25 July 1997

Unclassified



SUMMARY of CHANGE

DAPAM 73-7
Software Test and Evaluation Guidelines

This new Department of the Army pamphlet--
o Implements the policies and procedures contained in Department of Defense

Directives (DODD)5000.1,DODD 8000.1,and DODD 5000.2-R and Army Regulation
(AR) 25-3and AR 73-1 (paras 1-2 and 1-4).

o

Provides an overview of the software test and evaluation (T&E) process (chap
3).

o

Details software T&E responsibilities (para 4-3).

o

Describes the software T&E process from pretest activities (chap 5) through
software and systemtesting (chap 6), fielding and transition to maintenance
(chap 7), and post deployment software support (chap 9).

o

Provides guidance for integrating software metrics into software T&E and
continuous evaluation procedures (chap 10).



Headquarters
Department of the Army
Washington, DC

25 July 1997

Department of the Army
Pamphlet 73-7

Test and Evaluation

Software Test and Evaluation Guidelines

By Order of the Secretary of the Army:

DENNIS J. REIMER
General, United States Army
Chief of Staff

Official:

Sl B

JOEL B. HUDSON
Administrative Assistant to the
Secretary of the Army

Army electronic publishing database. Melegate this authority, in writing, to a divi-
content has been changed. sion chief within the proponent agency in the
Summary. This pamphlet provides guidancegrade of colonel or the civilian equivalent.
and procedures to implement test and evalu

tion policy for materiel and information Sys'gited to send comments and suggested im-
tems as promulgated by AR 73-1. It provide rovements on DA EForm 2028

detailed guidance for preparing and conducglT .
ina a test and evaluation proaram f ecommended Changes to Publicatons and
g brog ank Forms) directly to ATTN DACS-TE,

software—intensive Army systems.
Applicability. The provisions of this pam- TEST AND EVALUATION MANAGE-
’ MENT AGENCY, OFFICE OF THE CHIEF

phlet apply to the Active Army, the ArmyOF STAEE 200 ARMY PENTAGON

National Guard, and the U.S. Army Reservp\NASHINGTON DC 20310-0200
Proponent and exception authority. '

The proponent of this pamphlet is the Deputistribution.  Distribution of this publica-
Under Secretary of the Army (Operations andon is made in accordance with initial distri-
Research) (DUSA (OR)). The DUSA (OR)bution number (IDN) 095498, intended for

%_uggested Improvements. Users are in-

History. This publication is a new DAnas the authority to approve exceptions tgommand levels D and E for the Active Ar-
pamphlet. This publication has begfs pamphlet that are consistent with law anghy, the Army National Guard, and the U.S.
reorganized to make it compatible with thgntrolling regulation. The DUSA (OR) may Army Reserve.

Contents (Listed by paragraph and page number)

Chapter 1
Army Software Test and Evaluation, page 1

Section |

General, page 1

Purpose ¢ 1-1page 1

References « 1-Zpage 1

Explanation of abbreviations and terms < 1page 1
Policy basis of software T&E « 1-fage 1

T&E and risk management « 1-page 1

Section |l

Continuous Evaluation, page 2

Background < 1-6page 2

Objective of CE ¢ 1-7page 2

Scope of CE « 1-8page 2

CE activities and levels of evaluation « 14%age 2

Section Il

Software versus System Testing, page 2
General « 1-10page 2

Test levels « 1-11page 3

Section IV

Organization and Approach, page 4
Pamphlet organization « 1-1page 4
Approach ¢ 1-13page 5

Chapter 2
Terms and Definitions, page 6
General « 2-1page 6

Terminology cross reference « 2—fage 6

Chapter 3
T&E as Part of Acquisition and Development, page 10

Section |

Basis, page 10

General « 3-1page 10

Software T&E program requirements ¢ 342age 10

Section |l

Test Program Considerations, page 10

The acquisition strategy * 3—-page 10

The type of system « 3-fage 11

Target environment and intended end use « 3dge 11
The software development strategy « 3pége 11
Prototypes ¢ 3—7page 12

Security certification ¢ 3-8page 12

Metrics and T&E « 3-9page 12

Disciplines essential to effective T&E ¢ 3-1page 12

Section Il

Software T&E Methods, page 12

Tools and related techniques « 3-hge 12
Static analysis techniques « 3-l2age 13
Dynamic analysis techniques ¢ 3-13age 13
Symbolic testing ¢« 3—14page 14

Formal analysis « 3—-15page 14

Chapter 4

Building the Software T&E Team, page 15
General « 4-1page 15

Objective « 4-2,page 15

DA PAM 73-7 « 25 July 1997 i

Unclassified



Contents—Continued

Organizations and responsibilities ¢ 44&ge 15 General « 5-41page 26
Software T&E team members « 4-gage 15 Objective » 5-42 page 26
Independence in software T&E ¢ 4—page 16 Entry criteria *+ 5-43page 26
Working groups * 4-6page 16 Test activities « 5-44page 26
Evaluation activities « 5-45page 26
Chapter 5 Metrics « 5-46,page 26
Pretest Activities, page 20 Decision criteria *« 5-47page 27
Section | Chapter 6
General, page 20 Test Activities, page 27
Purpose ¢ 5-1page 20
Scope ¢ 5-2page 20 Section |
Objective « 5-3,page 20 General, page 27
Purpose « 6-1page 27
Section I Scope ¢ 6-2page 27
Planning and Oversight, page 20 Objective  6-3,page 27
General « 5-4page 20
Objective » 5-5,page 21 Section |l
Entry criteria « 5-6,page 21 Software Implementation and Unit Testing, page 27
Test activities « 5-7page 21 General « 6-4page 27
Test plans ¢ 5-8page 21 Objective  6-5,page 27
Other plans « 5-9page 21 Entry criteria « 6-6,page 27
Evaluation activities « 5-10page 22 Test activities « 6—7page 27
Metrics « 5-11,page 22 Evaluation activities « 6-8page 27
Decision criteria ¢« 5-12page 22 Metrics  6-9,page 28
Decision criteria « 6-10page 28
Section Il
The Software Development Environment, page 22 Section Il
General « 5-13page 22 Unit Integration and Testing, page 28
Objective « 5-14,page 22 General « 6-11page 28
Entry criteria » 5-15page 22 Objective » 6-12,page 28
Test activities « 5-16page 22 Entry criteria « 6-13,page 28
Evaluation activities ¢« 5-17page 22 Test activities » 6-14page 28
Metrics « 5-18,page 23 Evaluation activities « 6-15page 28
Decision criteria « 5-19page 23 Metrics  6-16,page 29
Decision criteria < 6-17page 29
Section IV
System Requirements Analysis, page 23 Section IV
General « 5-20page 23 CSCI Qualification Testing, page 29
Objective « 5-21 page 23 General « 6-18page 29
Entry criteria ¢+ 5-22 page 23 Objective « 6-19,page 29
Test activities » 5-23page 23 Entry criteria « 6-20,page 29
Evaluation activities « 5-24page 23 Test activities » 6-21page 29
Metrics ¢ 5-25,page 24 Evaluation activities « 6—22page 29
Decision criteria « 5—26page 24 Metrics » 6-23,page 30
Decision criteria « 6—24page 30
Section V
System Design, page 24 Section V
General « 5-27page 24 Integration and Testing of Computer Software Configuration ltems
Objective » 5-28,page 24 and Hardware Configuration Items, page 30
Entry criteria « 5-29,page 24 General « 6-25page 30
Test activities »« 5-30page 24 Objective » 6-26,page 30
Evaluation activities « 5-31page 24 Entry criteria « 6-27,page 30
Metrics « 5-32,page 24 Test activities » 6-28page 30
Decision criteria *« 5-33page 25 Evaluation activities « 6—29page 30
Metrics « 6-30,page 31
Section VI Decision criteria « 6-31page 31
Software Requirements Analysis, page 25
General « 5-34page 25 Section VI
Objective » 5-35,page 25 System Qualification Testing, page 31
Entry criteria « 5-36,page 25 General « 6-32page 31
Test activities *« 5-37page 25 Objective « 6-33,page 31
Evaluation activities « 5-38page 25 Entry criteria « 6-34page 31
Metrics « 5-39,page 25 Test activities » 6-35page 31
Decision criteria « 5-40page 26 Evaluation activities < 6-36page 31
Metrics  6-37,page 31
Section VII Decision criteria « 6-38page 32

Software Design, page 26

ii DA PAM 73-7 « 25 July 1997



Contents—Continued

Section VII

System Developmental Testing (DT), page 32
General « 6-39page 32

Objective « 6-40,page 32

Entry criteria « 6—41page 32

Test activities » 6-42page 32

Evaluation activities « 6—-43page 36

Metrics  6-44,page 36

Decision criteria « 6—-45page 36

Other considerations * 6-4@age 36

Section VIII

System Operational Testing, page 37
General « 6-47page 37

Objective « 6-48,page 37

Entry criteria « 6-49,page 37

Test activities » 6-50page 37
Evaluation activities « 6-51page 37
Metrics » 6-52,page 40

Decision criteria = 6-53page 40
Other considerations * 6-5%age 40

Chapter 7
Activities Related to Fielding, page 40

Section |

Scope * 9-2page 45

Objective « 9-3,page 46

PDSS issues * 9-4age 46

Controlling software changes ¢ 9-page 46
Scope of testing « 9-6age 46

Determining test support needed for independent evaluation « 9-7,

page 46
Other considerations * 9-§age 46

Chapter 10
Army Software Metrics, page 49

Section |

General, page 49

Introduction ¢ 10-1,page 49

Policy requirements ¢ 10-Zage 49

Types of metrics « 10-3page 49

Application « 10-4,page 49

Metrics program considerations ¢ 10-4%age 49
Organization and approach « 10+fage 49

Section |l

The Army Metrics Set, page 49
Cost metric « 10-7page 49
Schedule metric « 10-8&age 52

Computer resource utilization metric « 1048age 56
Software engineering environment (SEE) metric « 10-gHYe 58
Requirements traceability metric « 10-1dage 59
Requirements stability metric « 10-1@age 62
Design stability metric « 10-13jage 64
Complexity metric « 10-14page 66

Breadth of testing metric « 10-1page 69

Depth of testing metric + 10-1fage 71

Fault profiles metric « 10-17page 72

Reliability metric « 10-18,page 76

Manpower metric « 10-19page 79

Development progress metric « 10-3tage 81

General, page 40
Purpose ¢ 7-1page 40
Scope * 7-2page 41
Objective » 7-3,page 41

Section I

Software Fielding, page 41
General « 7-4page 41

Objective « 7-5,page 41

Entry criteria « 7-6,page 41

Test activities » 7-7page 41
Evaluation activities « 7—-8page 41
Metrics  7-9,page 41

Decision criteria « 7-10page 42
Other considerations « 7-1page 42

Section Il
Relating Metrics to Management Issues, page 82
MAIS assessment illustration « 10-2fage 82

Section Il

Software Transition, page 42
General » 7-12page 42

Objective « 7-13 page 42

Entry criteria « 7-14 page 42

Test activities » 7-15page 42
Evaluation activities « 7-16page 43
Metrics « 7-17,page 43 Table List
Decision criteria < 7-18page 43

Appendixes

A. Referencespage 83

B. Statement of Work (SOW) Considerationmge 84
C. Metrics Data Collection Templatepage 87

Table 1-1: Policy foundation for software T&page 2

Chapter 8 Table 2-1: Developmental test terminology cross—reference,
Ancillary Activities, page 43 page 7
Purpose « 8-1page 43 Table 2-2: Operational test terminology cross—referepage 7
Scope ¢ 8-2page 44 Table 2-3: Organizational roles cross—referemage 8
Objective » 8-3,page 44 Table 2—4: Documentation cross-referenpage 8
Software configuration management ¢ 8pége 44 Table 2-5: Tools and techniques cross-referepage 9
Software product evaluation « 8-page 44 Table 2-6: Software problem/change prioritipage 9
Software quality assurance ¢ 8-fiage 44 Table 2-7: Software problem/change categonege 10
Corrective action « 8-7page 45 Table 3-1: Examples of program strategipage 11
Joint reviews ¢ 8-8page 45 Table 4-1: Responsibilities in T&Hage 17
Other considerations « 8-®age 45 Table 4-2: Software T&E team membepage 18

Table 5-1: Metrics applicable to planning and oversighgge 22
Chapter 9 Table 5-2: Metrics applicable to software development
Post Deployment Software Support Considerations, environment,page 23

page 45 Table 5-3: Software development environment decision criteria,

Purpose « 9-1page 45 page 23

DA PAM 73-7 « 25 July 1997 iii



Contents—Continued

Table 5-4: Metrics applicable to system requirements analysis,Table 10-19: How to compute test progress measures for depth

page 24
Table 5-5: System requirements analysis decision critgsige 24
Table 5-6: Metrics applicable to system desigage 24
Table 5-7: System design decision critepage 25

Table 5-8: Metrics applicable to software requirements analysis,

page 25
Table 5-9: Software requirements analysis decision criteria,
page 26
Table 5-10: Metrics applicable to software desigage 26
Table 5-11: Software design decision critepage 27

attributes,page 72

Table 10-20: Depth of testing relation with other metname 72

Table 10-21: How to compute average fault agege 73

Table 10-22: Fault profiles relation with other metripage 76

Table 10-23: Computed items for software/system reliability
tracking, page 76

Table 10-24: Reliability relation with other metriqgzage 79

Table 10-25: Manpower relation with other metripage 81

Table 10-26: Development progress relation with other metrics,
page 81

Table 6-1: Metrics applicable to software implementation and unit Table 10-27: Metric correlation to MAIS status report

testing, page 28

Table 6-2: Software implementation and unit testing decision
criteria, page 28

Table 6-3: Metrics applicable to unit integration and testing,
page 29

Table 6-4:

Table 6-5:
page 30

Table 6-6: CSCI qualification testing decision critepage 30

Table 6-7: Metrics applicable to CSCI/HWCI integration and
testing, page 31

Table 6-8: CSCI/HWCI integration and testing decision criteria,
page 31

Table 6-9: Metrics applicable to system qualification testing,
page 31

Table 6-10: System qualification testing decision critgrage 32

Unit integration and testing decision critepage 29
Metrics applicable to CSCI qualification testing,

Table 6-11: Metrics applicable to system developmental testing,

page 36
Table 6-12: System developmental testing decision criteria,
page 36
Table 6-13: Metrics applicable to operational testipgge 40
Table 6-14: Operational testing decision critepage 40

Table 7-1: Metrics applicable to software fieldingage 42

Table 7-2: Software fielding decision criteripage 42

Table 7-3: Metrics applicable to software transitipage 43

Table 7-4: Software transition decision critenmge 43

Table 9-1: Determining problem likelihoogage 46

Table 9-2: Determining problem impagiage 46

Table 9-3: Degree of DT/OT needed to support evaluations,
page 4

Table 10-1: Examples of software related WBS elements/
development activitiespage 52

Table 10-2: CRU relation with other metrigsage 57

Table 10-3: Capability maturity model definitionsage 58

Table 10-4: Sample requirements level to technical document
correlation, page 60

Table 10-5: Recommended items for requirements traceability
metric tracking,page 60

Table 10-6: Requirements traceability relation with other metrics,
page 62

Table 10-7: Requirements stability relation with other metrics,
page 64

Table 10-8: How to compute design stability measupagie 65

Table 10-9: Design stability relation with other metripage 66

Table 10-10: Measures comprising the complexity mgpage 67

Table 10-11: How to compute cyclomatic complexiyge 67

Table 10-12: How to compute Halstead size measyp&ze 67

Table 10-13: Thresholds to minimize complexipage 68

Table 10-14: Complexity relation with other metripgge 69

Table 10-15:
tracking, page 70

Table 10-16: How to compute testing progress measpagge 70

Table 10-17: Breadth of testing relation with other metrics,
page 71

requirementspage 82
Table C-1: Cost metric data record formpage 87
Table C-2: Schedule metric data record fornpaige 88
Table C-3: CRU metric data record formpage 88
Table C-4: SEE metric data record formpage 89
Table C-5: Requirements traceability data record forpage 90
Table C-6: Requirements stability metric data record format,
page 90
Table C-7:
Table C-8:
Table C-9:
Table C-10:
Table C-11:
page 93
Table C-12:
Table C-13:
Table C-14:
page 95

Design stability metric data record fornmge 91
Complexity metric data record formpage 91
Breadth of testing metric data record forrpage 92
Depth of testing metric data recqrdge 93

Fault profiles metric record metric data format,

Reliability metric data record formpgge 94
Manpower metric data record forngge 94
Development progress metric data record format,

Figure List

Figure 1-1:
page 1
Figure
Figure
Figure
Figure
Figure
Figure
page 3
Figure 6-3:
Figure 6-4:

System decision milestones and life—cycle phases,

Requirements and test level relationspime 4
Sample integrated project activity netwqrge 6
T&E methods and development activitiggge 15
Level of T&E involvemengpage 20
Software/system generic DT issyssge 33

: Sample software issues and evaluation criteria,

DTRR software T&E checklighage 35

Software/system generic OT issysgge 38

Figure 6-5: OTRR software T&E checkligtage 39

Figure 9-1: Example checklist for determining potential problems
in implementing a software change packapage 48

Figure 10-1: The Army’s software metriggage 50

Figure 10-2: Metrics during the life cyclpage 51

Figure 10-3: Sample cost expenditure graphge 53

Figure 10-4: Sample cost performance trend graplge 53

Figure 10-5: Typical program schedufgage 54

Figure 10-6: Sample schedule metric grapage 55

Figure 10-7: Sample graph of changes in activity durations,
page 55

Figure 10-8: Sample computer resource utilization grapge 57

Figure 10-9: Example of a software requirements traceability
matrix, page 61

Figure 10-10: Sample requirements traceability gragstye 62

Figure 10-11: Sample graph of requirements discrepancies over
time, page 63

Recommended items for breadth of testing metricFigure 10-12: Sample graph of ECP-Ss over tipage 64

Figure 10-13: Sample design stability and design progress graph,
page 66

Figure 10-14: Example flow graph and cyclomatic complexity,
page 67

Table 10-18: Software structure attributes measured by the depthrigure 10-15: Sample cyclomatic complexity displppge 68

of testing metric,page 72

Figure 10-16: Sample testing progress grgmge 70

DA PAM 73-7 « 25 July 1997



Contents—Continued

Figure 10-17: Sample depth of testing graph of statement measure,
page 73

Figure 10-18: Sample graph of software problem histoage 74

Figure 10-19: Example of monthly PCR activifyage 74

Figure 10-20: Sample graph of average age of open faults,
page 75

Figure 10-21: Sample graph of system mean time between mission
failures, page 77

Figure 10-22: Sample graph of mean time to restore system,
page 78

Figure 10-23: Sample graph of reliability model projection,
page 78

Figure 10-24: Sample graph of manpower effort meagpage 80

Figure 10-25: Sample graph of manpower staffing profiseye 80

Figure 10-26: Sample graph of development progneage 82

Figure B-1: Software T&E issue checklist examplage 85

Figure B—2: Sample metrics paragrappage 86

Glossary

Index

DA PAM 73-7 « 25 July 1997



vi

RESERVED

DA PAM 73-7 « 25 July 1997



Chapter 1
Army Software Test and Evaluation

1-2. References

Required and related publications and prescribed and referenced
forms are listed in appendix A.

Section |
General 1-3. Explanation of abbreviations and terms
1-1. Purpose Abbreviations and special terms used in this pamphlet are explained

a. Function.This pamphlet is a guide for implementing software
test and evaluation (T&E) and continuous evaluation (CE) policy as
prescribed in Army Regulation (AR) 73-1 and other governing 14 policy basis of software T&E
Department of Defense (DOD) and Department of the Army (DA)
directives.

b. ScopeThe material contained herein applies to all Army soft-

in the Glossary.

Army software T&E processes and practices have evolved over the
years, responding to new technologies, resource constraints, organi-

ware T&E performed for systems developed and/or maintained inzatio_n changes, and Iesson_s learned. These processes and practices
accordance with the AR 70 and AR 25 series of regulations. This'€qu're all Army systems_ with software, whet_her MSCR or AIS, to
includes T&E associated with development and support of the soft-Undergo product evaluation throughout their life cycles. Department
ware aspects of firmware. This pamphlet supports, but does notof Defense policies for MSCR and AIS are described in DOD series
replace, system-level T&E guidance described in other DA pam- 5000 and 8000 regulations. Department of Defense policy provides
phlets of the 73 series and should be used to augment them in th#he basis for Army T&E policy and procedures. The procurement
specific area of software. cycle milestones (MSs) and system life—cycle phases described in
c. Objective.The objectives of DA Pamphlet (Pam) 73-7 are DA Pam 73-7 are summarized in figure 1-1. Software—specific
to— events and activities are discussed in subsequent chapters. The DOD
(1) Present a unified software test and evaluation process fordirectives (DODD) and ARs that provide the foundation for soft-
materiel system computer resources (MSCR) and automated inforware T&E are identified in table 1-1.
mation systems (AISs).
(2) Provide implementation procedures for AR 73-1 policies re- 15 T&E and risk management
lated to software T&E.
(3) Describe a disciplined approach to life cycle software T&E.
(4) Serve as the Army standard for planning and implementing

As well as describing current Army testing policies, this pamphlet
shows the relationship of software products and functions as integral
components of their larger systems. Software T&E, CE, incremental

software T&E. This will promote—

(a) Consistency and ease of application.

(b) Early involvement of the T&E community in the acquisition
process.

working level reviews, increased user involvement in software
processes, software metrics, and other strategies are described as
means to increase knowledge, awareness, and control of the soft-

(c) Demonstration of software capabilities. ware development and maintenance process throughout a system’s

(d) Acquisition process improvements. life cycle. This additional insight will assist in highlighting areas of

(5) Actively support the principles of total quality management technical risk more uniformly at earlier stages so that they may be
(TQM) and integrated product teams (IPTs). addressed more expediently than in the past.

MS 0 MS | MS 1I MS 1l
Program Engineeri
Mission Concept Deﬁ?,mon gland g Production, Fielding/
Need Exploration ~and Manufacturing Deploymentand
Determination Risk Reduction | Development | Operational Support

* Post deployment software support occurs in this phase.

Figure 1-1. System decision milestones and life—cycle phases

DA PAM 73-7 « 25 July 1997 1



Table 1-1
Policy foundation for software T&E

Identification Title

DODD 5000.1 Defense Acquisition

DOD 5000.2-R Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated Information

System (MAIS) Acquisition Programs

DODD 8000.1 Defense Information Management Program

AR 70-1 Army Acquisition Policy

AR 73-1 Test and Evaluation Policy

AR 25-3 Army Life Cycle Management of Information Systems

Section |l 73-1. The goal is to formally assess software and system acceptabil-

Continuous Evaluation ity with respect to operational effectiveness and suitability for
deployment and use. Independent evaluators report results to the

1-6. Background acquisition community, such as the PM and program executive offi-

a. AR 73-1 defines CE as “ ...a process which provides a contin-cers (PEOs), and decisionmaking bodies, such as the Major Auto-
uous flow of T&E information on system status and will be em- mated Information Systems Review Council (MAISRC) or Army
ployed on all acquisition programs.” Through analysis of available Systems Acquisition Review Council (ASARC).
data, CE assesses technical and operational performancd, Continuous evaluation uses all available data sources and
functionality, effectiveness, suitability, maintainability, and suppor- relies on the sharing of that data. It is imperative that the results of
tability and identifies risks. Software CE is performed by personnel all evaluations be shared among the members of the IPT to prevent
involved in software engineering, software quality assurance (SQA),duplication, ensure deficiencies are identified, and corrective actions
software configuration management (SCM), independent verification are effective. Continuous evaluation consists of activities such as—
and validation (IV&V), Government developmental and operational (1) Collecting and analyzing data on software engineering
evaluation, and software developers. processes and procedures in order to identify those which permit

b. Continuous evaluation is fundamental to the proper manage-Poor quality products to be developed. The faulty approaches can
ment of a system. Decisionmaking must be based upon substantivéhen be modified or replaced. Examples of software engineering
evaluations of software characteristics, and indicators of maturity Procedures are requirements analysis, requirements walk—through
and reliability throughout the life cycle. These evaluations are para-and reviews, design procedures, quality control procedures, formal
mount to producing quality software which meets user needs. Fail-féviews and audits, and testing.
ure to perform objective evaluations throughout the life cycle has (2) Collecting and analyzing data on software products and the

resulted in significant software deficiencies, system delays, and cosfesults of events in _order to determine the status of software/system
overruns. progress and maturity. Examples of products and events are system/

subsystem specifications, system design reviews, code inspections,
1-7. Objective of CE and tests. _MatL_Jrity indicators in_clude quali_ty, _reliability, stabili;y,
The objective of software CE is to provide impartial assessments ofgnd maintainability. The International Organization for Standgrdlza-
software and system progress. It is a form of risk analysis. When-tion (ISO) 9000 series of standards and the Software Engineering
ever possible, assessments take into consideration the perspective JjStitute’s capability maturity model can be useful when performing

an operational user. these evalugtlons. . . .
(3) Collecting and analyzing data on corrective actions to ensure

1-8. Scope of CE proper resolution.

Continuous evaluation begins during the mission need determination C: The level of CE required for each system throughout its life
and concept exploration phases and continues through post deployeYcle is determined by its acquisition category, cost, type of dollars
ment support to system retirement. Software CE activities are tai-eXPended, and oversight interest.

lored to the scope and cost of development or post deployment

support and to the criticality of the system’s software to its user’s Section I _
mission. Software versus System Testing

1-10. General
; . " a. Unifying the T&E process requires that the software T&E
a. Continuous evaluation activities are conducted at three levels ..o include not only software, but its capability to perform
by— - . o . operational mission requirements as an integral part of the target
(1) Individuals in the development organization. The goal is 10 gystem. There are two objectives to testing: demonstration of per-
directly assess and improve quality through development activities.tirmance and assisting fault detection and removal procedures.
The results of these evaluations are reported within these organiza- |, goftware T&E must address system level requirements which
tions to document, correct, and reexamine deficiencies. Develop-indude, but are not limited to, performance, training, inter-
ment organizations are those contractors or Government agenciegperability and interfaces with other systems, supportability, conti-
tasked to perform software development or maintenance fom@ty of operations, and user interfaces. These aspects of the total
system. system must be tested and evaluated with the software functions.
(2) Individuals associated with the project/program/product man- Examples of specialized system tests which are part of the software
ager (PM) such as SQA, SCM, and other matrix support personnelintegration process are identified in chapter 6.
The goal is to assess software and system quality, conformance to ¢. An incremental test strategy allows a variety of test events
specifications, maturity, reliability, and stability. Evaluations per- which are diverse enough to provide confidence in the effectiveness
formed within the matrix support organizations are reported to the of the test process. In addition, an incremental strategy provides a
PM, the developer, and independent testers and evaluators. means to identify and correct failures earlier and more effectively.
(3) Government evaluators or assessors in accordance with ARFigure 1-2 shows the general relationship between different levels

1-9. CE activities and levels of evaluation

2 DA PAM 73-7 « 25 July 1997



of requirements and corresponding test levels. Specific test eventsesults, can handle erroneous inputs, and have been exercised with
and levels are tailored to the needs of each acquisition. combinations of differing functions. Software developers are respon-

d. Independence in testing and reporting channels promotes ob=sible for ensuring that user requirements are correctly implemented
jectivity in test and evaluation activities. Army requirements for in their designs and ensuring that when pieces of software are
independent testing are cited in AR 73-1. Independence in reportindntegrated, they function as required.

is discussed in chapter 4. b. Software/system testds the software subsystems are inte-
1-11. Test level grated, software developers ensure that realistic stress and inter-
—1L. lest levels operability are verified in tests at systems integration. This is the

a. Software testd.ower levels of software tests performed by the final opportunity to check software requirements prior to technical
software developers are structured to verify the accuracy of algo- PP y d P

rithms and computations and to make sure that the portions of codedESts un by the Government at the system level. Software tests are

software work in accordance with the design, meet the expecte a%rorrnailjlr)i/esconducted in software development facilities and

DA PAM 73-7 « 25 July 1997 3



User
Requirements

Operational
Test

Government
Developmental
Test

System Technical
Level

System
Qualification
Test

System
Requirements

Software/System
Level

CSCIIHWCI
Integration and
Test

CSClI
Qualification
Test

Software

. Software
Requirements

Level

Software
Design
Requirements

Unit Integration
and Test

Unit
Design
Requirements

Code, Data,
Procedures

LEGEND
CSCI - Computer software configuration item
HWCI - Hardware configuration item

Figure shows formal and informal tests. All tests not applicable to all programs.

Figure 1-2. Requirements and test level relationship

c. System technical tes®echnical system—level tests look at the which focuses on effectiveness, suitability, and survivability. Char-
capability of the software to support system performancacteristically, operational tests involve the intended user troop units
Government-run technical tests, called developmental tests (DTs)or organizations and take place in realistic operational environments.
are conducted in the laboratory, Government test beds, and/or useDperational tests may be performed at any time during the life
environments using qualified civilians or soldiers. Government de- cycle. The need for these tests is determined by the IPT and the
velopmental testing is structured to subject the system to stressacquisition strategy.
levels commensurate with those that the mature system will be
subjected to in representative operating environments. These testSection IV
may be structured to estimate the outer limit of the system’s opera-Organization and Approach
tional envelope, if required. Engineering requirements, performance,
and user requirements are also examined during DT. 1-12. Pamphlet organization )

d. Operational testsOperational testing is system—-level testing Following this introduction, DA Pam 737 is arranged as follows:

4 DA PAM 73-7 « 25 July 1997



a. Chapter 2 supplies a common basis for terms used throughoutlocumentation or other military guidance referenced in the proce-
the pamphlet. dures of this pamphlet can be effectively accommodated and is
b. Chapter 3 outlines Army software test program requirements encouraged.
and issues to consider when planning or evaluating a test program. ; This pamphlet does not provide guidance on implementing
c. Chapter 4 identifies principal organizations in the software and pop acquisition reform policy and does not identify alternative

system acquisition process and their respective roles and responsk,ymercial substitutes for previously mandated military standards

bilities in T&E. A . _
. and specifications regarding software development production and
d. Chapters 5 through 8 provide general procedures for test " interrelated processes. Additional sources for information in this

lated or CE tasks typical to major system and software developmenf

activities. Tasks performed by personnel in chapter 4 who are notirea include, but are not limited to, the DOD Index of Specifications

members of the developer’s organization are included. Each activityano! Standards (DODISS_)' International Org_anization f°'? SFandardi-
is presented in the following manner: zation (ISO)_, International Ele_ctrotechnlcal C_:ommlssmn _(IEC),
(1) General. What the activity comprises. American Naponal _Standards Institute (ANSI), Instltl_Jte of EIectrl_caI
(2) Objective. The primary purpose of the activity. and Electronlg Engineers (IEEE), and Soﬁwqre Englneerlng Instltutg
(3) Entry criteria. Other activities, products or events that should (SEI). The guidance documents referenced in this pamphlet were in
have occurred prior to one or more steps in the activity undereffect at the time of publication.
discussion. c. This pamphlet does not promote any particular software or
(4) Test activities.Representative actions relating to planning, system development strategy. It is up to the Government program
executing, or reporting tests that are appropriate for the developmenmanagement and its developer(s) to negotiate appropriate activities,
activity. work items within activities, data products, and sequencing of
(5) Evaluation activities.Representative actions relating to CE eyents.
that are appropriate for the development activity.
(6) Metrics. Software metrics for which data can typically be
collected or which are analyzed during the activity.
(7) Decision criteria. Summary of test or evaluation outcomes

d. Activities are not stand—alone entities, but interact with prod-
ucts and work performed in other activities. They may be dynamic
and iterative. Steps in one activity initiate work in other activities.
expected to be addressed prior to the end of the activity. Independe_n_t management action can also _initiate activit?es. In gener-

e. Chapter 9 discusses unique post deployment software suppor?l‘ an act|V|.ty is comprised of the followlng e.Iements. .
considerations relative to the activities in chapters 5 through 8. (1) Planning the work to be accomplished in an activity.

f. Chapter 10 supplies detailed guidance on software metrics that (2) Performing the work by executing the plan.
support the processes described in this pamphlet. (3) Evaluating (or monitoring) work performed against expected

results. Based on the results, replanning often occurs and the cycle
1-13. Approach

a. Military Standard 498 (MIL-STD-498), the current military repeats. . . . L .
standard for software development and documentation acquisitions, € TN€ interconnections among project activities can be viewed as
and IEEE Std P1498/EIA IS 640, its commercial equivalent, serve & network. A highly simplified generic integrated project network is
as the bases for the activity descriptions. These activities, to varyingshown in figure 1-3. In the figure, activities A, C and E are initiated
degrees, are inherent in any software—intensive system. Substitutinddy Program management action at their designated starting times.
other commercial or industry standards for software developmentEvaluation steps in activity A initiate planning for B and execution

steps in activity C. Activity G follows an iteration of C.

DA PAM 73-7 « 25 July 1997 5



Activity A~

—

Initiate ——+< Plan —+<Exec:.:te>*<Evaluate ——> Initiate B
Initiste C

— Initiate G

Note: Activity durations not
drawn to scale over time.

Program Start time

Figure 1-3. Sample integrated project activity network

Chapter 2 relationship between terms currently in use and any deviations in
Terms and Definitions terms used in this pamphlet.

d. In the past, MSCR and AIS programs chose to use a variety of
2-1. General formats for their technical data. These were consolidated into a

a. Key to implementing the software T&E process is the use of single set under MIL-STD-498 and Institute of Electrical and Elec-
consistent and common terminology. This chapter establishes the settonics Engineers Standard (IEEE STD) P1498/EIA IS 640 (com-
of terms used throughout DA Pam 73-7 and references similarmercial version) for any type of software acquisition. Table 2—4
terms often used within the AIS and MSCR environments. Acro- shows the consolidated documents and comparable MSCR and AIS
nyms and definitions for many of the terms are contained in the software documents of earlier military standards. Systems contracted
Glossary. for prior to MIL-STD-498, of course, may continue to maintain

b. Of special note is the term “ software developer.” Throughout software deliverable data in their original formats. The table also
this pamphlet, a developer is any contractor or Government agencyncludes documents pertaining to Government DT, operational test,
that generates software products whether by means of new developand independent evaluation. Two of the documents have expanded
ment, modification, reuse, re—engineering, maintenance or otlfieir software role as a result of AR 73-1. They are the users’

activity. functional description (UFD) and metrics reports.
Note. MIL-STD—-498 and IEEE Std P1498/EIA IS 640 will hereafter be
2-2. Terminology cross reference referred to as “ consolidated software standards” throughout the rest of this

a. Entries under the heading “ Current Term” in the following pamphlet.
tables describe the T&E process in this pamphlet. Other terms e Table 2-5 is a cross reference of terms related to software
shown are for reference only. Note — In this pamphlet, the term development tools and techniques.
MSCR is equivalent to the computer resources comprising weapons f, The priorities and categories in tables 2-6 and 2—7 are recom-
systems, battlefield automated systems (BAS) or mission critical mended in order to provide a standard means to score software
computer resources (MCCR). AIS is equivalent to Army informa- deficiencies and change requests during development and test. These
tion mission area (IMA) systems. common classifications form the basis for controlling entry and exit
b. A common set of terms is used to provide a singular approachobjectives, promoting standard interpretation of test deficiencies,
to describing tests across the Army. Tables 2-1 and 2-2 list theand fostering meaningful entries in the Army test incident reporting
current terms and those which have been used in the past. system (ATIRS). These priorities and categories were chosen be-
c. Organizational roles are presented in table 2-3 to show thecause they incorporate a user's view of problem type and criticality;
many other classifications are possible.

6 DA PAM 73-7 « 25 July 1997



Table 2-1

Developmental test terminology cross—reference

Current term

AIS term

MSCR term

Attributes

Government developmental
test (DT) 1

System qualification test

Computer software configu-
ration item (CSCI) qualifica-
tion test

CSCl/hardware configura-
tion item (HWCI) integration
test

Unit integration test
Unit tests

Experimental

Software qualification test
(SQT)

Software development test
(SDT) cycle/system test

SDT cycle/system test

SDT cycle/system testing 3

SDT module/program test-
ing
SDT unit tests

Prototyping

DT, comparison test (CPT),
first-article test (FAT),
preproduction qualification
test (PPQT), technical fea-
sibility testing (TFT) 2

System integration test
(SIT)

CSCI formal qualification
test (FQT)

System integration testing 3

Computer software compo-
nent (CSC) integration test
Computer software unit
(CSU) tests
Prototyping/emulation/
brassboard

Formal test(s) requiring independent testers, independent
evaluators/assessors.

Requires complete design limit tests (stress volume).
Required throughout life cycle.

Independent evaluation/assessment after MS 1lI (only if
new or unresolved issues).

Formal test(s) witnessed by Government for system ac-
ceptance.

Test plans, procedures, conditions prepared by
developers.

Levels of test, documentation defined by statement of work
(sow).

Software metrics collected.

Formal test(s) witnessed by Government for software ac-
ceptance.

Test plans, procedures, conditions prepared by
developers.

Levels of test, documentation defined by SOW.

Software metrics collected.

Informal tests controlled and performed by software and
system developer.

Tests and environment documented in software develop-
ment files (SDF)s.

Includes demonstrations or limited functional capability for
users to interact with during design or development.
Same attributes as CSCI/HWCI integration test.

Same attributes as CSCI/HWCI integration test.
Informal tests controlled and performed by developer typi-

cally to demonstrate limited functional capability for user
feedback during development.

Notes:
1 See AR 73-1 for test types.

2 Comparison test (CPT), first-article test (FAT), preproduction qualification test (PPQT), technical feasibility test (TFT).

3 Prior to formal qualification test.

Table 2-2

Operational test terminology cross—reference

Current term

AIS term

MSCR term

Attributes

Initial operational test
(om?

Follow—on operational test
(FOT)

Supplemental site test
(SST)

Early user test (EUT), early
user experiment (EUE)
Force development test
(FDT), force development
experiment (FDE)

Limited user test (LUT)
User acceptance test
(UAT)?

Emergency fixes

Software acceptance test
(SAT) !

SAT!?

SST

Beta or prototype testing
(informal)
Beta or prototype testing
(informal)

None
None

Lead site verification test

10T, Joint test (JT), multi-
—Service operational test
(MOT), operational testing
(om?2

FOT, on-site user test
(osuT) 3

None

Early user test and experi-
mentation (EUTE)

Force development test
and experimentation
(FDTE)

None

None

Tests for emergency fixes

Required for MS III.

Independent testers, independent evaluators/assessors.
Class VI AIS systems require 10T/follow—on operational
test (FOT), but tester performs evaluation/assessment.
Independent testers, independent evaluators/assessors
only if unanswered issues, new issues, fixes from |OT.

All systems with upgrades, fixes, enhancements after MS
.

Supplements AIS 10T or user acceptance test (UAT) to ex-
ercise all configurations used operationally.

To answer issues prior to MS |l or identify system solutions
and/or define issues at MS |l or beyond.

Conducted with users under field conditions.

Supports acquisition and development of requirements,
doctrine, training.

Generally single issue user test between MS Il and MS IlI.
Post MS Il AIS user test when full FOT not needed.

Notes:
1 with SST, if necessary.

2 Joint test (JT), multi-Service operational test (MOT), operational test (OT).

3 On-site user test (OSUT).

4 All tests are formal unless otherwise noted.

DA PAM 73-7 « 25 July 1997 7



Table 2-3
Organizational roles cross—reference

Current term

AIS term

MSCR term

Acquirer

Approval Authority

Central Design Activity (CDA) AIS (no change
to MSCR terms)

Computer Resources Integrated Product Team
(IPT)

Continuous Evaluation

Developer

Developmental Tester

FP/CBTDEV or

User Representative

Independent Developmental Evaluator/Asses-
sor

Independent Evaluator

Materiel Developer (MATDEV)

Operational Tester
Project/Program/Product Manager (PM)

Software or Developer's Testers

Software or Developer's Tester

Software Quality Assurance (SQA) Organiza-
tion

T&E Team/T&E Community

Test IPT
User Representative

User Group
Approval Authority
Software Development Center (SDC)

Computer Resources Working Group (CRWG)

Quality Assurance/IV&V

Application System Developer/Development
Group

Independent Third Party Tester

Functional Proponent (FP)
Independent Evaluator

Independent Evaluator

Assigned Responsible Agency

Major Automated Information System Review
Council (MAISRC)

Non-Automated Data Processing (ADP) Oper-
ator, Organization

Independent Third Party Tester

Project Officer/Operations Manager/Program
Manager/Product Manager/Project Manager
Software Testers

Tester

Automation Quality Organization

Matrix Support and Testers

Test Integration Working Group (TIWG)
Proponent Agency (PA)

Contracting Agency

Program Decision Authority

Life Cycle Software Engineering Center (LCSEC)/
Software Support Activity (SSA)

CRWG

Developmental Evaluators: IV&V/SQA/LCSEC
Developing Agency/Contractor/Software Engi-
neers

Developmental Tester

IV&VILCSEC/SQA

Combat Developer (CBTDEV)

Developmental Evaluator/Assessor

Operational Evaluator

Materiel Developer

Army Systems Acquisition Review Council
(ASARC)

User/Troops/Unit

Operational Tester

Program Manager/Product Manager/System Man-
ager

Software Engineering Testers

Developmental Tester

Assurance (SQA)

Matrix Support, PDSS Personnel, Testers, and In-
dependent Evaluators/Assessors

TIWG

Similar to CBTDEV/FP

Notes:
-- AIS/IMSCR term still applies.

Table 2—4
Documentation cross-reference

Current term

AIS term

MSCR term

Computer Operation Manual (COM) 1
Computer Programming Manual (CPM) 1
Computer Resources Life Cycle Management
Plan (CRLCMP)

Database Design Description (DBDD) 1

Event Design Plan (EDP) (operational)
Firmware Support Manual (FSM) 1

Interface Design Description (IDD) 1

Interface Requirements Specification (IRS) 1

Metrics Reports

Operational Concept Description (OCD) 1

Management Plan (software level), System
Decision Paper

Database Specification (DS) 2

SAT Test Plan

Software Unit Specification (US), interface de-
sign info 2

Software Unit Specification (US), interface req'’t
info 2

Management Plan

Software Change Package (SCP)
Technical Test Plan (formerly SQT, PT)
Implementation Procedures (IP) 2

Problem Reports (PR)

Maintenance Manual (MM) and Implementa-
tion Proc. (IP)

Engineering Change Proposal - Software
(ECP-S)
Functional Description (FD), section 2 2

DA PAM 73-7 « 25 July 1997

Computer System Operator's Manual (CSOM) 3
Software Programmer’s Manual (SPM) 3
Computer Resources Management Plan (CRMP)

Test Design Plan (TDP) (operational)
Firmware Support Manual (FSM) 3
Interface Design Document (IDD) 3

Interface Requirements Specification (IRS) 3

Metrics Charts

Program Management Plan

Engineering Change Proposal - Software
Detailed Test Plan (DTP)

Life Cycle Software Support Environment User’s
Guide

Software Trouble Report (STR)/Software Problem
Change Report (SPCR) or Test Incident Reports
(TIRs)

Software Support Transition Plan

Developmental Software Support Environment
Documentation of Commercially Available/
Privately Developed Software

Software Change Notice, Engineering Change
Proposal (ECP)

System/Segment Design Document (SSDD), sec-
tion 33



Table 2-4
Documentation cross-reference—Continued

Current term

AIS term

MSCR term

Software Design Description (SDD) !

Software Development Plan (SDP) 1
Software Input/Output Manual (SIOM) 1
Software Installation Plan (SIP) 1
Software Problem/Change Report (PCR)
Software Product Specification (SPS) *

Software Requirements Specification (SRS) 1
Software Test Description (STD) 1

Software Test Plan (STP) 1

Software Test Report (STR) 1

Software Transition Plan (STrP) !

Software User Manual (SUM) 1

Software Version Description (SVD) 1
Software Quality Program Plan (SQPP)
System Evaluation Plan (SEP) (operational)
System/Subsystem Design Description
(SsbD) !

System/Subsystem Specification (SSS) 1

Users’ Functional Description (UFD) and Func-
tional Description (FD)

Software Unit Specification (US), design info 2
Mainztenance Manual (MM), “ as-built” design
info

Functional Description (FD), section 7 2

User Manual (UM) 2

Implementation Procedures (IP) 2

Problem Report, Trouble Report

Maintenance Manual (MM), maintenance pro-
cedures ?

Software Unit Specification (US), req't info 2
Test Plan (PT), detailed info 2

Test Plan (PT), high level info 2

Test Analysis Report (RT) 2

Maintenance Manual (MM), planning info 2
End User Manual (EM) 2

Automation Quality Plan (AQP)

Independent Evaluation Plan (operational)
System/Subsystem Specification (SS), system
design info 2

System/Subsystem Specification and Func-
tional Description, system req't info 2
Functional Description (FD) 2

Software Design Document (SDD) 3

Software Development Plan (SDP) 3

Software Trouble Report (STR), Problem Report
Software Product Specifications (SPS); 3
Computer Resources Integrated Support Docu-
ment (CRISD), modification procedures 3
Software Requirements Specification (SRS) 3
Software Test Description (STD) 3

Software Test Plan (STP) 8

Software Test Report (STR) 3

Support Document (CRISD), planning info 3
Software User's Manual (SUM); 3

Training Manuals (for CBTDEV)

Version Description Document (VDD) 3
Software Quality Program Plan (SQPP)

Test and Evaluation Plan (TEP) (operational)
System/Segment Design Document (SSDD) 3

System/Segment Specification 3

Notes:
-- AIS/IMSCR term still applies.

1 Document from MIL-STD-498/IEEE std P1498/EIA IS 640.

2 Document from DOD-STD-7935A.
3 Document from DOD-STD-2167A.

Table 2-5
Tools and techniques cross-reference

Current term

AIS term

MSCR term

Development Tools

Instrumentation, (Drivers, Emulators,
Stimulators) Performance Monitors
Recovery/Reconfiguration Testing
Software Development File (SDF)
Software Development Library
Software Engineering Environment

Software Reliability

Development Tools, Toolbox
Performance Monitors

Checkpoint/Recovery Testing
Program Folder

Development Library (DEVLIB)
Developer's Environment

Reliability

Development Tools, Toolbox
Drivers, Emulators, Stimulators

Recovery/Reconfiguration Testing
Software Development Folder

Software Development Library

Host Environment (Software Engineering
Environment)

Software Reliability

Table 2-6
Software problem/change priorities
Current term Applies if problem could— AIS term MSCR term
Priority 1 a. Prevent the accomplishment of an essential capability. Emergency Priority 1
b. Jeopardize safety, security, or other requirement
designated “ critical.”
Priority 2 a. Adversely affect the accomplishment of an operational- Urgent Priority 2
or mission-essential capability, and no work-around
solution is known.
b. Adversely affect technical, cost, or schedule risks to
the project or to life-cycle support of the system, and no
work-around solution is known.
Priority 3 a. Adversely affect the accomplishment of an operational- Urgent Priority 3

or mission-essential capability, but a work-around

solution is known.

b. Adversely affect technical, cost, or schedule risks to
the system or to life cycle support of the system, but a
work-around solution is known.

DA PAM 73-7 « 25 July 1997



Table 2-6
Software problem/change priorities—Continued

Current term Applies if problem could— AlS term MSCR term

Priority 4 a. Result in user/operator inconvenience or annoyance Routine Priority 4
but does not affect a required operational- or mission-es-
sential capability.
b. Result in inconvenience or annoyance for development
or support personnel but does not prevent the
accomplishment of those responsibilities.

Priority 5 Any other effect. Routine Priority 5

Table 2—-7

Software problem/change categories

Current term Product affected AIS term MSCR term

Code The software code Technical Software

Database/data file A database or data file Technical Software

Design The design of the system or software Technical or functional Design

Manuals The user, operator, or maintenance manuals Documentation Documentation

Operational concept The operational concept Documentation Documentation

Requirements The system or software requirements Documentation Documentation

Test information Test plans, test descriptions, or test reports Documentation Documentation

Plans One of the plans developed for the project Documentation Documentation

Other Other software products

Chapter 3 d. Software T&E must provide data to support qualitative and

T&E as Part of Acquisition and Development quantitative software metrics. These metrics serve as measures and
indicators of the critical technical and operational characteristics that

Section | both the software and the integrated system need to achieve.

Basis e. A software T&E program must support the IPT approach by
effectively sharing T&E results among participating organizations

3-1. General across all life-cycle phases. Each element of the software T&E

a. The procedures in this pamphlet present an iterative, struc-program must provide data to support software and system acquisi-
tured, and comprehensive approach to software test and evaluatiotion decisions.
throughout a system’s life cycle. Specific application of these proce- f. Software T&E must support the acquisition management proc-
dures should be tailored to the technical and management characteess. Individual programs and acquisition strategies determine the
istics of each system acquisition program. scope of a software T&E program.

b. Selection and tailoring of software T&E procedures are prima- g. All AIS and MSCR systems which contain classified or sensi-
rily determined by the level of technical risk which can be allowed tive unclassified information must incorporate safeguards to protect
in the system acquisition. Other significant program factors, such asagainst compromise, subversion, or unauthorized manipulation. For-
urgency to field, may also contribute to tailoring decisions. mal accreditation by a designated accreditation authority (DAA) is

c. This chapter discusses general strategies to consider in providrequired prior to fielding. Certification, a technical evaluation of
ing T&E which is responsive to program needs and user require-security functions that support the mode of operation and security

ments and results in fielding quality systems. policy for a system, supports accreditation.

h. Use of modeling or simulation in T&E to enhance evaluations
3-2. Software T&E program requirements and reduce costs is encouraged. However, modeling and simulation
According to AR 73-1 and AR 380-19— may only supplement tests, not replace them.

a. Software T&E must be accomplished within the context of the

overall system development and test program. It supports the conSection |l

cept of TQM for the system development. In accordance with the Test Program Considerations

TQM concept, all persons involved in the software development .

process are responsible for impacting the quality of the software3~3: The acquisition strategy

product. The following general guidelines constitute the minimum a. For any system, softwarg testers and evaluators need to ap-

requirements for a software T&E program. proach and plan their strategies based on fundamental acquisition
b. A software T&E program must reflect a systematic and meas- chalrac_lt_?]nsucs. fl'h;ese |ntclude but are not limited to—

urable process in which continuous software evaluations present a gzg S zteiﬁqgs\'/é?g r%zr??%ry' roach

realistic and iterative status report. Clearly defined risk assessment 3) S)c/thware develg ment gp roach

criteria for each life-cycle phase, metrics, and CE are the basis for a (4) The system’s copm lexit PP )

logical progression of software T&E. This progression is based on (5) De onment hilosg h Y-

demonstrating achievement of objectives at each step. ©6) Othperyparticigating grgyénizations

e LS b s o 15 I 0, SuPPOT SIS 1 Factors Such s acauilon category and DOD oversigh e

. - est determine system-level reporting and approval requirements, and
acceptable level that ensures system requirements and mission oh, . requirement for independent evaluation.
jectives will not be impaired by deficiencies attributable to software. ~ . 'tipie 3-1 contains several examples of alternative acquisition

The us;_r is the uIt:jmate argltre_\tor IOf ZySt?Ln rhequ_ll_iggents and Misy 5qram strategies. A system and its software need not share the
sion objectives and must be Involved with the program.  same strategy or the same degree of iteration in the case of multiple

10 DA PAM 73-7 « 25 July 1997



build/block implementations. It is beyond the scope of this pamphletinformation, publications and printing, and records management.
to offer guidance in determining an appropriate system or softwareThey are most often sustaining base systems.

development strategy; the consolidated software standards identified

in paragraph 2—2 offer guidance in this area. The selected strategy 3-5. Target environment and intended end use

does, however, significantly affect what technical information is  a. Single-site systems are those that reside in only one location.
available at what time, and the degree of risk that can be detected oppecial T&E considerations include arranging for concurrent live

corrected at any point. operation during testing periods and using realistic testing methods.

d. The system and software activities outlined in chapters A8 example of a single-site system is an Army wholesale logistics
through 9 of this pamphlet, taken in aggregate and performed endsyst_em which_ residgs on a large mainframe at one location. Test
to-end, approximate a grand design program strategy. Tailoring todesigns for single-site systems should account for—
combine activities when feasible, eliminate those not needed, or (1) Loading and running the system in specialized test regions
reflect the needs of particular programs is left to the discretion of Which are partitioned from production regions.
the appropriate functional area authority. Examples of tailoring in-  (2) Running the volumes and stress loading necessary to simulate
clude combined computer software configuration item (CSCl)/sys- Or stimulate expected interactions with users, other systems or the
tem qualification tests, combined or concurrent DT/OT events, andexternal environment. This may require the use of models.
use of nondevelopment items (NDIs). The accelerated software de- (3) Ensuring that all processing and reporting cycles are exe-
velopment process (ASDP) approach for AIS is a variant of the cuted, whether by models or actual testing, including end-of-year
incremental strategy (see DA Pam 73-1 and 73-5). and other cycle roll-ups.

e. Highly complex or wide-area systems may require extensive Db. Single-user systems are designed to be employed by one user
instrumentation and data reduction capability during large scafganization. This arrangement allows direct and consistent user
Government tests, which must be adequately planned and schedulednvolvement throughout development and T&E. It is essential that

f. Deployment philosophy considerations could be site specific OPerational users be part of T&E planning to ensure that specialized
operational requirements that necessitate multiple field tests. operations are not overlooked. Involving users is equally important

g. The most efficient and effective use of resources is to coordi- " @l other system types as well. , -
nate activities among the members of the IPT. c. Sustaining base information systems provide the capability to
raise, organize, train, equip, deploy, and sustain Army forces. They
usually do not physically move to the battlefield during mobilization
or wartime. These systems are typically found at centrally located
sites. Test designs for these systems should account for—

3-4. The type of system

a. MSCR refers to computer resources acquired as integral ele
ments of systems used by military personnel to carry out combat i . o . : A
missions. They can be physical components of weapons systems, o (1) Performing different missions during peacetime, mobilization,
computer resources essential to a weapons system’s operation anffartime, and demo?"'za“of‘,"pefa“”g condl.tlons. .
maintenance in the field. The term also applies to ancillary com- (2) Demonstrating ability for immediate readiness when
puter resources (hardware, software, documentation, data, and sg®cessary: ) - - ,
forth) associated with testing and maintaining the MSCR, such as— (3) Demonstrating ability to transition smoothly and rapidly from

(1) Training devices. one operatlr)g.condltlo.n to another. . . N

(2) Automatic test equipment. d. Strategic information systems are typically those whlc_h faC|I_|—

(3) Land-based test sites. tate c_omm?_;md _and control_of Army f_orces and resources, including

> ; . planning, directing, controlling, reporting, and communications. Test

(4) System integration and test environments. designs for these large scale systems should account for the same

b. Software T&E of MSCR should address unique characteristics considerations as sustaining base systems with the added emphasis
such as real-time processing constraints, security safeguards, faulyn fail-safe operations and information security. Strategic informa-
tolerance, human health and safety concerns, and adverse operatififhn systems are most often managed under DOD and Joint Chiefs
environments. of Staff (JCS) publications and AR 525-1; however, some may be

c. Automated information systems encompass the functions, re-developed under AR 25-3 policies. An example of a strategic sys-
sources, equipment, software and activities associated with one otem is the Global Command and Control System (GCCS).
more of the disciplines of automation, telecommunications, visual

Table 3-1

Examples of program strategies

Program strategy Define all first Multiple development  Field interim system/
requirements first? cycles? software?

Grand Design (Once-Through) — Determine user needs, define requirements, Yes No No

design the system, implement the system, test, fix and deliver.

Incremental (Preplanned Product Improvement) — Determine user needs, de- Yes Yes Maybe
fine requirements, plan sequence of builds to implement a subset of total re-

quirements in each. Perform design through test/fix/delivery per build, succes-

sively adding capability.

Evolutionary — Determine a set of user needs; final determination is unknown. No Yes Yes
Perform requirements definition through delivery. Refine user needs and sys-
tem requirements and repeat for successive builds.

Other — Variations of the above or alternate approaches.

e. Theater and tactical systems operate in a defined area of thén adverse operating environments, real-time processing constraints
operational theater and focus on combat and wartime missions. Tesand tactical communications.
designs should address additional considerations related to operatin%
—6. The software development strategy

The software development strategy is an element of the system

DA PAM 73-7 « 25 July 1997 11



acquisition strategy. Computer resource items may be newdging prototypes can also reveal difficulties or constraints in imple-
developed or reused, in whole or in part, from other developmentmentation that normally would not become evident until later in the
sources. The type and degree of testing needed to verify correctprocess. Deficiencies can be handled with less impact to the total
reliable operation can vary for each type. program when detected early.

a. Newly developed softwar&oftware built for the first time c. In the event that long-term operational use of prototype soft-
needs verification and testing that all functional and performanceware is planned, the prototype material must be properly tested,
and design requirements allocated to it behave as specified andlocumented and accepted into the approved software baseline in the
expected, including the interfaces to other software, hardware andsame manner as other software comprising the system.
human operators. The majority of procedures and activities de- . o
scribed in this pamphlet pertain to newly developed software.  3-8. Security certification _

b. Nondevelopment item¥he T&E community needs to care- a. The software test program_must accommodate the require-
fully review and understand plans which incorporate NDI in the ments of AR 380-19 regarding information security. . .
acquisition strategy. Documentation, evidence of testing, extent of P: Examining the control of the procedures used during design

e > d test to develop software is an integral part of the software
software modifications and eventual software supportability & test o
areas which impact T&E. certification and system accreditation process. AR 380-19 states—

(1) The NDI approach uses products that have already beo%rsélrzitiir?;tlware must be completely tested before becoming
developed for another purpose or another user. An NDI component (2) Both valid and invalid data must be used for testing.

is chosen because it should be capable of meeting a set of system (3) Testing is not complete until all security mechanisms have
requirements. The NDI systems can be the means to field a systenil)een examined and expected results attained

faster and cheaper with little or no new development effort. For (4) Upon completion of maintenance or modification of software,

many systems, computer hardware is NDI. independent testing and verification of the changes is required
(2) Software frequently fits in the NDI category because it may before returning the software to operation.

be off-the-shelf. However, software in NDI systems may not always

be entirely off-the-shelf but is often a combination of off-the-shelf 3 g Metrics and T&E

and newly developed software. NDI software which requires modifi- 5. Metrics are technical and management tools that can highlight

cation or system integration must undergo software T&E. potential problems or deficiencies in the software development proc-
(3) NDI software may or may not require Government develop- ess or its products. They provide quantitative and qualitative meas-

mental testing. With rare exceptions, operational testing must beures which help focus management attention and, if appropriate,

conducted to ensure that the NDI software can support the overalkesources on the prevention or correction of problems.

mission. b. Metrics are an integral aspect of controlling and reporting
(4) NDI executive software is validated during operational testing software T&E activities and are required for Army software devel-

using a representative functional application. Normally, executive opments. Metrics measure and provide feedback, affecting both the

software cannot be released or used with an application until it hagproduct and process, enabling managers to continuously improve the

successfully completed an operational test. (Executive software in-process.

cludes compilers, utilities, operating systems, special customized c. Metrics may be developed, collected, and used by many organ-

system software, and so forth.) izations (developers, evaluators, LCSEC, software engineers, testers,
(5) Unigue NDI T&E considerations are— SQA, IV&V, and so forth). Metrics are reported to evaluators, PMs,
(a) Developer's enhancements or adaptations to NDI software PEOs, and review council decision authorities.

should perform correctly and not introduce new defects. d. Chapter 10 details the characteristics and use of each of the

(b) Developer provided documentation should be adequate to per-metrics referenced throughout this pamphlet. Many of the metrics
mit suitable operation and maintenance of NDI software in its in- provide insight into the software’s readiness for test and the prog-
tended user and maintenance environment. ress of testing that has occurred.

(c) In order to use previous test results of NDI in lieu of Govern-
ment (re)testing, the conditions under which the NDI was tested
must be sufficiently similar to the conditions under which the NDI
will be used by the Army.

(d) When integrating multiple NDI components, T&E must dem-
onstrate that system performance characteristics are met.

3-10. Disciplines essential to effective T&E

Several key disciplines are essential to ensuring the right software
products and systems are built, verified, and fielded. They are con-
figuration management (CM), quality assurance (QA) and a closed-
loop corrective action system. In brief, CM ensures only authorized
o changes are made to baselined products under controlled circum-
c. Reusable softwaréSoftware which is developed for the pur-  gances QA monitors and evaluates the development process and

pose of being reused in other applications with little or no further roq 1ting products for adherence to approved development proce-
modification can be more costly and time consuming to produce andyres and the work statement. The corrective action system assures

verify than components built without reuse in mind. Determining tyat detected problems are properly recorded and resolved.
and documenting the scope and potential interfaces of reusable

items, such as requirements, design or code, is a more rigorous andeciion i1

formal process. Consequently, so is the test strategy to verify theggfware T&E Methods

items the first time. However, incorporating well engineered reusa-

ble components in succeeding applications should reduce overalB-11. Tools and related techniques

integration and test effort and time. a. This section briefly describes a variety of testing methods
which can be used to detect errors, to develop sets of test data, and
3—7. Prototypes to monitor computer system resources. The list is not all inclusive

a. Prototypes are working models suitable for evaluating system put representative. The overall software T&E program should incor-
design, performance, or production potential. Software prototypesporate a number of complementary techniques. Automated assist-
are normally development tools, not a testing technique or a sub-ance is available to support many of these methods, such as
stitute for system development, testing, and configuration manage-computer aided software engineering (CASE) tools. The generic
ment. A prototype often concentrates on a specific subset of theterm 'program’ is used to represent the software entity under test. A
total user requirements. method may be applicable to one or more types of software entities,

b. Informal releases of prototypes are encouraged for demonstrasuch as a unit or CSC, or a physical subset of an entity, such as a
tions to users and early looks at the user interface designs and tprocedure or file.
assist in refining requirements earlier in the development process. b. Figure 3-1, which follows the last method described, identifies

12 DA PAM 73-7 « 25 July 1997



software system development activities in which each T&E method specify the intent of input, output, intermediate steps of functions,
is typically employed. A method may be useful in other activities as and constraints.
well, based on availability of automated support, available reb. Cause-effect graphing.his technique applies to test case de-

sources, or other relevant factors. sign. It is used to systematically select a set of test cases (data)
which have a high probability of detecting errors that exist in a
3-12. Static analysis techniques program. The technique examines the inputs and combinations of
Static analysis involves examining or analyzing a software productinputs to a program and identifies the expected outputs. These in-
rather than executing code in order to find errors. puts and outputs are derived through analysis of requirements speci-

a. Reviews, walk-through and code inspectidiese techniques  fications instead of code, providing an independent check of the
apply the principle of visual inspection of portions of technical code’s implementation of the requirements.
documentation to detect errors. The procedure typically involves a c¢. Performance measurement techniquéBese techniques in-
small working group of technical personnel who use requirementsclude execution time and resource analysis. This involves monitor-
documents, specifications, program listings and standards as théng software execution to locate code or throughput inefficiencies
basis for performing line-by-line code reading, doing walk-throughs either by random sampling or by means of software probes. Moni-
of test inputs, tracing requirements from document to document ortored items may include number of central processing unit (CPU)
performing attribute checklist inspections. The clean room softwarecycles for groups of instructions, waiting times, control passing
engineering approach, for example, makes heavy use of static verififrom one software component to another, memory paging times, and
cation techniques and formal specification methods, to the extentamount of memory or secondary storage space used.

that unit testing is no longer necessary and code is first tested at a d. Path and structural analysiShese tools monitor the number
system level. of times a specific portion of code is executed, the amounts of time

b. Code auditorsA code auditor is a software program that involved, and other data. Portions of code are classified into three

examines the source code of other programs to determine whethelevels for the structural analysis: statements, branches and paths.
prescribed programming standards and practices have bé&&fement analysis is the least rigorous while path analysis is the
followed. most rigorous method. Generally, some form of structural analysis is
c. Interface checkingThe flow of information and control within ~ instrumented as part of other dynamic analysis testing. Structural
a system are areas where mistakes can occur, for example, bgrjaly&s can be effective for detecting computation, logic, data han-
calling the wrong procedure or passing the incorrect data. Interfaced!ing and output errors. , , ) ,
checkers are automated tools which can analyze a requirements & INteractive debugging techniqudsteractive testing aids are
specification, design specification, or code to detect errors in infor- 1°0!S used to control and analyze a program while it is executing.

mation or control passed between software components antf Programmer can suspend program execution at any point to
modules examine program status, view the values of selected variables and

d. Physical units checkind?hysical unit checking involves using memory locations, modify the state of the executing program and

an automated tool to specify and check measurement units in comgra}ceRE:r']3 docr%mtfsltigo%g tghcehneixﬁgu“?g dﬁéggr?;nﬁ dom samples of
putations. For example, computations involving different units " 9 que p P

which are not meaningful would be detected, such as adding feell.nput data, executes the computer program using this data, then
and seconds. Strongly typed programming languages, such as AdLompares the generated output to the expected output. Knowledge

provide this type of check when programs are compiled. Qf the actual input distribution may or may noft be conS|der(_ed in thﬁ
e. Data flow analysisThis automated technique detects whether Input generation process. One advantage o randpm festing Is the
; n t ntial seri f event r in software execution exposure of the program to sequences and combinations of inputs

or nhot sequential series of events occu sottware execution. nich would not be expected to happen. These combinations frequ-
f. Structure analyzersAutomated structure analyzers detect vio-

lati ¢ |1 dard has i ! . ently are among the first combinations of inputs experienced in the
ations of control flow standards, such as Improper calls to routines, o e ational environment. This method cannot test all possible com-

infinite loops and incidents of recursion in source code or deSignbinations of inputs and should not be the primary approach in the
language statements. Analyses may be reported in tabular or graphisyerq]| test strategy. It can be useful, however, in discovering unex-
cal form. pected program behavior.

g. Cross reference program€ross-reference programs produce g Functional testingThis is the most commonly used testing
lists of data names and statement labels showing all places they argpproach. The objective is to test the software functions by execut-
used in a program. Compilers may include cross reference generamg the program with specific controlled input, thereby verifying the
tion options. These programs are useful for programming languagesynctions performed by that program. Errors which prevent the pro-
without structured programming syntax, such as early versions ofgram from operating correctly can be detected through functional
FORTRAN or BASIC. testing; however, use of this method alone does not guarantee a

h. Input space partitioning techniquRemtitioning techniques thorough test of the code nor an absence of errors.
emphasize the use of path analysis, domains, or partitions to build h. Mutation analysisThis technique detects errors in a program
sets of test data. Path analysis generates a set of test data which wilhd determines how well the program has been tested. It entails
cause a selected path in software to be executed. Domain testingtudying the behavior of a large collection of different versions of
detects errors in software control flow which occur when an input the same program, called derivatives, which have been systemati-
follows the wrong path. Partition analysis detects missing path er-cally derived from the original program. The method involves intro-
rors, incorrect operators, domain errors, and computation errors aslucing a small number of errors into a program at a time, and
well as generating a test data set that is sensitive to domain andepeating this many times. If the data used to test the program and
computational errors. its mutant derivatives is complete, each mutant should produce a

i. Complexity analysi3his technique examines coded algo-different output data set given the same input data set. If this occurs,
rithms or programs to determine whether improvements in areas ofthe program under test is assumed to be correct within the limits of
correctness, number of operations required, amount of space used dhe assumption, and the test data set is assumed to be complete.
code straightforwardness are possible. Chapter 10 describes severMutation analysis requires automated tools to produce realistic mu-

methods of complexity analysis. tations and to examine the behavior of the programs under test. An
expert human analyst should also scrutinize the derivatives. Large
3-13. Dynamic analysis techniques programs can require an enormous number of mutations to produce

a. Assertion testingThis technique requires the use of an asser- effective results. Mutation analysis is used at the point where a
tion preprocessing tool, which generates executable assertion codeource program exists with a set of test data upon which the pro-
embedded with the source code. Assertions are statements whiclgram is known to operate correctly.

DA PAM 73-7 « 25 July 1997 13



i. Error seeding.Error seeding is a statistical approach to evalu- first be accredited and validated by an activity independent of the
ating the comparative quantity of errors remaining in large software model developer (see AR 5-11).
systems by estimating the effectiveness of testing. The technique is () Modeling and simulation can also be employed to explore the
to introduce errors into the code, perform the test, then analyze theensitivity of test results to conditions other than those experienced
output to determine the percentage of the known errors which werg, testing. This use of modeling and simulation is not, however, a

detected. This percentage is then applied to overall error detection,aieqory of real-time testing as described above. See DA Pam 73-8
results to estimate the number of unknown errors which were NOteor this type of information

detected. Characteristics of seeded errors that escaped detection are o .
analyzed and new test cases devised to check for those errors. Err?_r (2) Test bedsA test bed re_fers toa specific environment estab-
seeding is particularly applicable to critical software where errors IShed for the purpose of testing project software. It may range from
occurring in the end use environment would be intolerable. a set of programs used with a static analysis test tool to a fully
j. Real-time testingReal-time testing simulates the operational ©Perational suite of target hardware surrounded by simulation and
system environment. Generally, this technique is of value in produc-Stimulation devices. Test bed is synonymous with the consolidated
ing stress and volume loads, creating test conditions which aresoftware standards’ software test environment.
difficult to produce in a controlled setting, and for situations where
tests in the operational environment are not possible for reasons3—14. Symbolic testing
such as safety and prohibitive cost. This method, also called symbolic execution, is applied to paths
(1) Modeling, simulation and stimulation. through programs. Input values are symbols that stand for sets of
(@) Modeling typically refers to using mathematical representa- values rather than actual values. The symbolic execution is a sub-
tions to mimic behavior or characteristics of the external environ- stitution of symbolic values of variables in expressions for the
ment. In simulation, selected features of the behavior of one systemyariaples themselves. This technique can be used to generate expres-
(the target system) are represented by the behavior of another syssions which describe the cumulative effect of the computations
tem (an abstract depiction of the target system) through the use ofnich occur in a program path. Symbolic execution is used as a

software. Stimulation requires using one or more devices 10 recreatgqis for gata flow analysis and proof of correctness of computa-
the actions or stimuli needed to make the system under test react &Fons. It is primarily useful for languages that are algebraic such as

if receiving actual data in its deployed environment. Models are .
often used in simulation and stimulation programs. Stimulation de- FORTRAN._Other Ianggagt_es_, such as COBOL, are C(_)ns_tructed n a
manner which makes it difficult to generate symbolic input.

vices for AIS are typically called remote terminal emulators.
(b) Significant technical risk can be mitigated by early use of )
modeling and simulation in software T&E. This risk reductiog—15- Formal analysis
depends highly on the validity of the model as compared to the This method involves a formal mathematical proof that given a
actual system. When models or simulations will be used as a subspecific input and programming language rules, the desired output
stantial basis for formal acquisition milestone decisions, they mustwill be obtained. It relies on mathematical assertions regarding the
intent of the specification.

14 DA PAM 73-7 « 25 July 1997



. ) P
S /S .\(\Q & A o
< /S ST S Y 8/ S
S/ ,,o"o g(}‘oooe,,\‘:' SAVE s> Ca‘oq,q‘ 2P oqo‘;é‘ < ,\g\? e
*0 \t\o.{p@o‘(\ (\<‘ vg YS‘ o@ £ Y/4¢ ) @’é 00«096\.\ & \‘9 () «G" .§\
o ”Q.’ é# ng,b& , (?\QQ\GX‘&)@ Q;‘\%QO \0:" £ dé (\6\ ”g 6.8\006\ &OQQQOQY.Q '\\&;&9 v&\b O\Ys\
ST 7 o/ Y EIES
Activity ST AT LA
Planning & Oversight
S/W Devel. Environment
System Requirements Analysis X
System Dasign
S/W Requirements Analysis X X X
SW Design X XX X
S/W Implement. & Unit Testing X IX|IX[X|X]XIX|IX]XIX[X]X[X XX IX{X]|X X | X
Unit Integration & Testing X|IX|[X|X]|X{XIX]|X]X|X XXX XIXIX[XIX]X]|X
CSCI Qualification Testing X X
CSCIHWCI Integration & Testing X X |x|x
System Qualification Testing X
Developmental Testing X
Operational Testing S|L
S/ Fielding
S/W Transition
S/ Configuration Mgt
S/W Product Evaluation
S/W Quality Assurance X | x
Corrective Action
Joint Reviews
X - T&E method is typically applied in this activity. L - Applies to AIS Limited User Test only.
S - Technique may supplement, but not replace testing.
Figure 3-1. T&E methods and development activities
Chapter 4 b. Software T&E personnel are part of the PM’s system acquisi-
Building the Software T&E Team tion team to provide technically knowledgeable support in the areas
of software design, performance, and capabilities. Their purpose is
4-1. General to enhance and improve the exchange of information, prevent dupli-

This chapter discusses the PM’s T&E team. The acquisition plan-cation of testing and data collection, and provide the PM with
ning performed by the PM requires input from software T&E organ- information to make decisions.

izations to ensure that a viable T&E program is established and c. Table 4-1 identifies general categories of T&E team players,

maintained. summarizes their responsibilities, and provides examples of specific
o Army organizations in each category. Membership and level of
4-2. Objective participation of team members varies based on a program’s acquisi-

Early meetings with the PM, PEO, materiel developers (or contrac-tion category and strategy, DOD oversight interest, and other
tors, if applicable), and the other members of the T&E team arefactors.

paramount to achieving a comprehensive and integrated test pro-

gram. These meetings address the operational and Government dé—4. Software T&E team members

velopmental test concepts. Issues discussed are: developmeat These organizations are identified and assigned early so that
strategy, configuration management, test bed design, facilities, in-software T&E planning is integrated into the project as part of the
strumentation, test files, simulations, models, proposed test datesPM's total program and acquisition team. This enables software

test players, and the overall T&E concept. T&E personnel to determine the extent to which data can be shared
and tests and evaluations can be combined. The software T&E team
4-3. Organizations and responsibilities can better support the PM and the CE process by—

a. The specific organizations responsible for T&E activities are (1) Sharing evaluations.
identified by the PM for each acquisition program. Many of the (2) Identifying deficiencies early.
organizations must be involved during mission need determination (3) Providing alternative T&E strategies.
in order to provide early planning, assessment, and structure to the (4) Keeping the PM and decision authorities informed.
system/software development and T&E. b. Table 4-2 is an outline of software T&E team members and

DA PAM 73-7 « 25 July 1997 15



responsibilities. Figure 4-1 depicts a typical level of member in- users to be involved in testing, and so forth). The TEMP format is

volvement for a major program. provided in DA Pam 73-2.
C. Sof[Ware T&E teamwork iS.enhanced thrOUgh the effe(.:tive use (b) Chartering other groups to provide specia“zed input and sup-
of working groups as well as informal working relationships. port as needed.

4-5. Independence in software T&E (c) Resolving routine problems, assisting in allocation of T&E

Independence in testing and reporting channels promotes objectivity €SOUrces, determining where data can be collected to answer issues
in T&E activities. There are three basic levels of independence. @nd criteria, and discussing evaluation and test events.

a. Independence within the development organization includes (d) Assisting preparation of T&E portions of the acquisition strat-
QA, CM, and test personnel who report through a different chain of egy, requests for proposal (RFPs) and related contractual documents
management than the software designers and coders. as well as assisting evaluation of developer proposals when there are

b. Independence within the PM matrix organizations includes T&E implications.
quality, IV&V, and test personnel who provide evaluation or testing  (e) Coordinating waivers of approved testing.

for the PM, but report through a major subordinate command) petermining the level of evaluation needed when a system
(MSC) or major Army command (MACOM) rather than the PM's change—

chain of command. . is not a response to a new or revised operational requirement,
c. Independent developmental and operational testers
evaluators. These personnel report findings to DA decision_

authorities. is not a preplanned product improvement to fill an existing

operational requirement, but
4-6. Working groups — the combat developer (CBTDEV) or functional proponent

a. Function.In keeping with the integrated product and process (FP) deterr_nines_the change to have direct, or significant potential
development concept, a PM establishes and typically leads one ofor, operational impact.
more working-level IPTs (WIPTs) to monitor various program ac- €. Computer resources IPRA computer resources IPT, compara-
tivities and products. The WIPTs usually deal with a particular topic ble to the former CRWG, plans, monitors, and implements aspects
and bring together the necessary disciplines to address the topic asf the acquisition and maintenance of computer resources for the
they are needed. Two example WIPTs to address the topics ofPM. This is described in detail in AR 70-1 and DA Pam 70-3.
testing and computer resources are described here. The organization (1) This team is usually established as soon as computer re-
presented is not mandatory, however the tasks the groups perforny, rces are determined to be part of the system.

would need to be accomplished by some IPT for the program. ) . .
b. Test IPT.This group is comparable to the former TIWG. (2) Membership of the c_omputer resources IPT typically includes
the PM, user representatives, post deployment support personnel

Detailed information regarding the composition, responsibilities, ac- . ;
tivities, and products ogf this ggroup canp be found ig AR 70-1 and (e.g., LCSEC), independent testers (developmental and operational),

DA Pam 73-1 and DA Pam 73-2. These items are summarizedndependent evaluators, software quality assurance (product assur-
below. ance), and other representatives as required.

(1) The test IPT is the primary T&E team formed to manage and (3) Duties include, but are not limited to—
plan the total T&E effort. This is implemented primarily via the (a) Preparing and updating the system’s CRLCMP. The
system’s test and evaluation master plan (TEMP). The team struc-CRLCMP describes the management strategy for software develop-
tures the T&E program for the system and its software, and inte-ment, testing, and life-cycle support and is required in accordance

grates the varying test, evaluation, and data requirements. with AR 70-1. CRLCMP content and format are outlined in DA
(2) The test IPT is usually established during mission need deter-pagm 70-3.

mination and concept exploration. (b) Managing life cycle computer resources for the system.

(3) The structure of the team and its principal members varies L L
depending upon the type of system. Some systems may addreSﬁéI? Il)\/rl(c)J(r;(let;)Srlng and participating in software development and the

software testing via a WIPT devoted to computer resources in gen- i .

eral. A computer resources IPT would provide the software T&E (d) Supporting the test IPT (or equivalent). By means of a Mem-

support and input to the system test IPT. orandum of Agreement (MOA), a computer resources IPT identifies
(4) The principal members of the test IPT are the PM, independ-the products, analyses, and T&E support it will provide the test

ent testers and evaluators, user representatives, logisticians, pogrorking group. This typically consists of—

deployment support personnel, and trainers. When appropriate to the — Providing input to the system TEMP.

system, a survivability/lethality representative and threat integrator — Providing software and computer resources expertise to the

are also principal members. Software quality assurance representaest IPT.

tive, development tester, and system engineers may participate as — Updating the test IPT periodically with the status of software

associate members. T&E, the impacts of software deficiencies, the readiness of software
(5) Duties performed by the team include— to support further T&E events, software T&E metrics and other
(a) Preparing the TEMP for the PM. This is carried out most related factors.

effectively by assigning members responsibility for the parts of the _— Reviewing all RFPs to ensure that software T&E factors are

TEMP. Parts | and Il are prepared by the PM with inputs from the addressed. A checklist of software T&E factors to be addressed in

principal _members. Part Ill is prepared by .the devglopmental testerthis review is located in appendix B of this pamphlet.

and the independent evaluator and may include input from SQA, _ serving on Source Selection Evaluation Boards (SSEBs).

SCM, IV&V agent, and the software developer. Part IV is prepared pembers of these boards review bidders’ responses to RFPs and

by the independent operational tester and the independent evaluatofgseass the offeror's capability to develop quality software. Any

Pfart v requlires input frocrin all _mengjb_ers to d_etelrm_ine T&E crjelsourcejmember, with the exception of independent operational testers and
(for example, automated testing drivers, simulations, models usedyerational evaluators, may participate in SSEBS.

16 DA PAM 73-7 « 25 July 1997



Table 4-1
Responsibilities in T&E

Organization Examples

T&E responsibility

Materiel Developer (MATDEV)

Also known by other names including: subordinate commands (Communica-
Matrix Support, assigned Responsible tions Electronics Command (CECOM),
Agency, Assigned System Developer, Missile Command (MICOM), Tank
PM'’s Matrix Support, Developer, Sys- Automotive Command (TACOM),

tem’s Engineers, SQA, SCM, IV&V, post  Aviation and Troop Command
(ATCOM), Armament, Munitions
(PDSS)LSCEC/CDA, Software Engi- Munitions and Chemical Command
neers (AMCCOM)) Information Systems
Command (Information Systems
Engineering Command (ISEC))

deployment software support

Information Systems Support Command
(ISSC), (Software Development Cen-

ter-

Washington (SDC-W), Software
Development Center-Lee (SDC-L))

Corps of Engineers

Medical Research and Development

Command

Space and Strategic Defense Command

MACOMs (for assigned information

systems only)

Army Materiel Command major

Research, development, T&E acquisition of assigned
systems in response to approved user requirements.

Primary T&E functions for ensuring support to the PM
include—

— T&E support in designing, planning, executing, assess-
ing, and reporting technical T&E programs.

—  Effective and timely system integration during system
development to allow for T&E of total system.

— Provide adequate and efficient design reviews, audits,
and quality assurance in support of the T&E program for the
system being acquired.

— Provide IV&V activities during software development.

User's Representative Training and Doctrine Command

Also known as Combat Developer (TRADOC)
(CBTDEV) or Functional Proponent (FP) Corps of Engineers
or Proponent Agency (PA)

(INSCOM)
Medical Command

Criminal Investigation Command
Information Systems Command

Any DA Staff section or MACOM may be
an FP for AIS systems

Director of Information Systems for
Command, Control, Communications,
and Computers (DISC4)

Intelligence and Security Command

Formulates doctrine, concepts, organization, materiel
requirements and objectives, prioritize materiel needs,
and represent the user in the materiel acquisition
process.

Coordinates with PM & MATDEV on matters pertaining
to area of expertise.

Staff agency responsible for the subject area in which
IMA resources are used or planned for use, including
automation in support of the function performed.

Develops and documents Critical Operational Issues and
Criteria.

Program Executive Officer (PEO) PEO-C3S, Responsible for administering a defined number of major or
PEO-STAMIS, non-major acquisition programs. PEOs report to and receive
PEO-IEW, direction from the Army Acquisition Executive (AAE).
PEO-FS, etc.

PM PM-CCTT, Chartered to conduct business on behalf of the Army.

Also known as Project Officer (non-major PM-OPTADS, Reports to and receives direction from either PEO or

programs), Program/Project/Product PM-SADARM, AAE and is responsible for the centralized management

Manager, Program Sponsor, System PM-ABRAMS,

Manager, Operations Manager (during PM-SIDPERS,

PDSS) PM-ILOGS,
MACOMs, etc.

of an acquisition program.

Responsible for planning and executing comprehensive
T&E program including TEMP preparation, coordination,
distribution, maintenance; establishment of test IPT
(or equivalent); conducting developmental test readiness
review (DTRR), preparing developmental test readiness
statement (DTRS) and operational test readiness
statement (OTRS); assuring conduct of
developmental T&E in accordance with AR 73-1;
providing system support
and training packages.

Responsible (with matrix support) for continuous
evaluation.

Developmental Tester Test and Evaluation Command (TECOM)

ISEC

MACOMSs who are MATDEVs

For assigned AIS, Army Materiel Com-
mand (major subordinate command) may
be different organization during PDSS

(for example, SQA)

Army command or agency that plans and conducts Govern-
ment developmental testing, including software testing, qualifi-
cation testing, technical feasibility testing, and so

forth. Tests are reported in accordance with AR 73-1.

DA PAM 73-7 « 25 July 1997 17



Table 4-1
Responsibilities in T&E—Continued

Organization

Examples

T&E responsibility

Developmental Evaluator

ISEC

Command or agency that addresses acquisition of effective,
supportable, and safe systems by assisting in engineering de-
sign and development, and determining the degree to which
the technical characteristics of the system have been
achieved.

Performs continuous evaluation on assigned systems.

Evaluations/assessments are made to PM and ASARC/
MAISRC.

Operational Tester

Operational Test and Evaluation
Command-Test and Experimentation
Command (OPTEC-TEXCOM)

INSCOM

MACOMs for non-major AIS and others
as assigned

Information Systems Command (ISC)
(ISEC) (only during PDSS of selected
AlS systems)

Army command or agency that conducts EUTE, FDTE,
10T, FOT, LUT, UAT, supplemental site test (SST).

All major systems require independent operational
testers (independent of MATDEV, user, and PM).

System Evaluator

OPTEC-Operational Evaluation Com-
mand
(OEC)
INSCOM
Medical Command (MEDCOM) (medical
materiel only in accordance with
AR 73-1 and AR 40-60)

Army command or agency that addresses effectiveness,
suitability, and survivability of the acquired/developed
systems by determining the degree to which the
system’s operational issues and criteria have been
satisfied.

Also addresses acquisition of effective, supportable, and safe
systems by assisting in engineering design and development
and by determining the degree to which the technical charac-
teristics of the system have been achieved.

Performs continuous evaluation of all assigned systems.
Required to be independent of MATDEV, user, and PM.

Directly reports evaluations to ASARC/MAISRC.

Table 4-2
Software T&E team members

Organization

Examples

Description/Responsibility Summary

Users’ Representatives

See table 4-1

The designated combat developers, functional proponents
and/or proponent agents.

Define and refine user needs and requirements to the
developer, T&E personnel, PM, and others.

Integral to ensuring that the system meets the stated user
needs and requirements and must be involved throughout the
entire acquisition process as a constant monitor to achieve
user needs.

Software Developer(s)

Central Design Activity (CDA)
Center for Software Engineering (CSE)

Life Cycle Software Engineering
Centers (LCSEC)

Contractors

Organization(s) designated to design and develop
software.

Identified when the concept evaluation requires
advanced demonstration of software as part of
the concept definition process and to reduce risk.

Software developer(s) used during early phases
may or may not be the same as those who will
design and develop the production software.

Responsible for testing the software during
as stated in work directives or the contract.

Software Developer’s internal QA

18

Army Quality Improvement Office (QIO)

Provide the internal QA functions for software design, devel-
opment and some test activities.

DA PAM 73-7 « 25 July 1997



Table 4-2
Software T&E team members—Continued

Organization Examples

Description/Responsibility Summary

Perform audits, evaluate metrics, and carry out comparable
activities to those performed by PM’s SQA personnel.

Report to management other than the software coders/de-
signers. They may all be part of the same contractor or
developer, but do not report through the same chain.

Software quality assurance organization ISEC

Generally matrix support to the PM.

Responsible for providing software quality evaluations
throughout the acquisition.

As requested by PM, SQA may assist in conducting software
reviews.

Participate in software walk-throughs, audits, analysis of met-
rics, and other similar activities. Efforts also include manage-
ment of or participation in the software test program and soft-
ware support transition.

Software configuration management ISEC
organization

Generally matrix support to the PM.

Responsible for performing software configuration manage-
ment activities throughout the acquisition.

As requested by PM, SCM may assist in conducting system
configuration control boards (CCBs), participate in software
CCBs and perform software configuration audits.

Post deployment support organization CDAs
LCSECs
CSE
Contractors

Army agency responsible for managing and/or performing
software maintenance.

Provides evaluation of software development risks
throughout life cycle.

Plans for software support, transition, and maintenance dem-
onstrations and prepares software suitability statement for
materiel release.

May also assist the PM in managing software development ef-
fort, including presiding over software related reviews and
managing or participating in the software test program and
software support transition.

Independent verification and validation Government agency
organizations Contractor

Designated by the PM to provide additional or corroborative
software design evaluations, witness developer tests, and
perform other quality assessment activities based on PM'’s de-
termination of software risk level.

For complex and sophisticated systems, system evaluators
use inputs provided by IV&V agencies to ensure that software
is sufficiently mature.

IV&V agent may not be a part of the development organiza-
tion.

Independent test organizations

OPTEC-TEXCOM (operational)
TECOM (developmental)

Provide test planning and coordination with software/system
evaluators.

ISEC
Provide the PM with independent developmental testing or
operational testing support throughout the life cycle.
May not be a part of the development organization.
Independent evaluation/assessment OPTEC-OEC (operational) Provide test planning and coordination with software/system
organizations ISEC testers.

Provide the PM with evaluation support throughout the life
cycle.

For systems with no IV&V agent, evaluators may be
required to prepare additional reports for system design
reviews regarding software status relative to system
objectives.

Cannot be a part of the development organization.

DA PAM 73-7 « 25 July 1997 19



S
:° > S
2OV N S
S S S X
o @ K 3 S 7 SN
‘& S %& %QS)QQO\ B oQé Q\OQ ‘B_@ £ %_Q/
- (&) o @ N IS 3 s S
Activity s \A‘zﬁ \%6? %ﬁ,g@ LT KNS

Planning & Oversight

SNV Devel. Environment

System Requirements Analysis %
System Design %
SNV Requirements Analysis %

SNV Design

SV Implement. & Unit Testing

Unit Integration & Testing

CSCI Qualification Testing % %

CSCI/HWCI Integration & Testing

System Qualification Testing % %
Developmental Testing %

Operational Testing

S/W Fielding
SNV Transition

SNV Configuration Mgt

SNV Product Evaluation

S/W Quality Assurance

Corrective Action

Joint Reviews

Light | V Moderate %

Figure 4-1. Level of T&E involvement

Chapter 5 b. The applicability of an activity to any given program and the

Pretest Activities depth to which it is carried out is dependent on overall system
factors such as acquisition strategy and level of technical risk. These

Section | activities apply to both AIS and MSCR.

General

5-3. Objective
5-1. Purpose The objective of this chapter is to enhance identification of prob-
Well in advance of software development and testing, the need for dems earlier in the life cycle in order correct them with less cost and
mission capability was identified and documented. Acquisition ac- disruption to the program. Continuous evaluation of pretest activities
tivity to respond to that need was initiated. This chapter summarizesallows early assessment of the software development processes.
these initial activities and identifies opportunities and procedures to
enhance the software T&E process through CE. Section |l

Planning and Oversight

5-2. Scope
a. The sections in this chapter parallel activities in the consoli- 5-4. General
dated software standards of paragraph #&-2ut have been ex- a. Planning and oversight are integral and continuous processes

panded to include T&E considerations beyond those of thieat take place for the lifetime of a system.
developer. The events described here span mission need determina- b. Software system planning actions are shown separately from
tion through the design of software entities. the core activities to which they pertain in order to emphasize their

20 DA PAM 73-7 « 25 July 1997



criticality regardless of deliverable contract data requirements list capability to perform its mission. If every issue is resolved favora-
(CDRL) requirements. Completion of appropriate planning is a pre- bly, the system should be effective, suitable, and survivable when

requisite to virtually every other activity in this pamphlet. employed in its intended environment by typical users. Critical op-
erational issues and criteria (COIC) are discussed in detail in DA
5-5. Objective Pam 73-3.

The purpose of planning and oversight is to prepare, record, and b. Software test plan (STP). The STP documents all the
monitor the objectives, methods, and resources necessary to acconsleveloper's plans for tests to qualify CSCls and, if appropriate,
plish an orderly and effective system and software acquisition. Thequalify software systems. It includes descriptions of—

different members of the software T&E team perform this role in (1) Tests to be performed.

their respective areas of responsibility. (2) Test environment.
(3) Test activity schedules.
5-6. Entry criteria (4) Data recording, reduction and analysis procedures.
For the purposes of this pamphlet, documented operational needs (5) Traceability of tests to software requirements and system re-
and requirements should exist to initiate this activity. quirements .

a. An operational need is identified by the users’ representative, C. Test design plan. The independent developmental evaluator is
FP, or CBTDEV in the form of a mission needs statement (MNS). responsible for the TDP. This plan describes how the system’s

b. An operational requirements document (ORD) describes the critical technical parameters will be tested during DT. Refer to DA
minimum essential: objectives, acceptable operational performance”@m 73—4 for details. _ _
parameters, and critical technical characteristics needed to meet the d- Operational T&E plan. The operational tester and independent

MNS, for the most promising system concept. The ORD is preparedOPerational evaluator prepare the TEP. It describes how the system's
by the user or users’ representative. operational issues will be tested during OT. The criteria against

c. A UFD is required for AR 70-1 acquisition category | and Il which the issues will be evaluated or assessed are included. Refer to

systems containing significant automated capabilities, and Class I-DA Pam 73-5 for detalils.

IV AR 25-3 systems for which TRADOC has CBTDEV responsi- 5_g Other plans

bility. The UFD expands upon the automation aspects of the ORD 3. Computer resources life cycle management plan. This plan is
and forms a basis for system requirements regarding computer reprepared and maintained by the PM, often by means of a computer
sources. TRADOC Regulation 71-2 and TRADOC Pamphlet 71-7 resources IPT (see para 4-6). A CRLCMP is required for software-

provide more information in this area. intensive systems developed under AR 70-1 and serves as a memo-
o randum of agreement between the MATDEV and responsible
5-7. Test activities LCSEC. Comparable information is also required for AR 25-3 AlIS

a. Tests are not inherent during the planning and oversight activi-and is documented in the system’s Management Plan (MP) and
ty, but may be arranged and performed at the discretion of the usergystem Decision Paper. In effect, the CRLCMP is the Government's
materiel developer (MATDEV) or FP, PM, and/or developer. These software development plan for a system’s computer resources over
test activities may take the form of controlled experiments more the life time of that system. It forms a basis for all strategy deci-
often than formal tests. sions involving the computer resources and integrates all aspects of

b. Preparing and periodically updating plans is an important part computer resource acquisition and maintenance from resource iden-
of planning and oversight. Effective plans in many areas affect thetification to post deployment support. See AR 70-1, DA Pam 70-3
ultimate acceptance, delivery and maintenance of an operationahnd AR 25-3 for details.
system and its support structure. To address the broader scope of b. Software development plan. The SDP describes a developer's
CE, more than just test plans are summarized in this section. Referplans for performing a software development effort, whether that

ences for format, content or policy information are cited. entails new development, reuse, re-engineering, maintenance or
other software production activities. As directed by the acquirer, the
5-8. Test plans SDP provides—

a. Test and evaluation master plan (TEMP). Every Army acquisi- (1) The software development process to be used including a
tion program that falls under the purview of this pamphlet has abreakdown of planned builds, with the objectives and activities
TEMP, with the exception of Class VI AR 25-3 information sys- comprising each build.
tems. The TEMP is a comprehensive system-wide test document (2) Overall software development methods and standards for each
that integrates all phases of a system’s test program. The TEMP is &pe of software product.
critical acquisition program management document against which (3) Approaches for incorporating or developing reusable software
technical progress and life-cycle decisions are assessed. Several si§f oducts.
nificant elements of the plan are summarized below. It is essential (4) How critical requirements will be handled.
that software-intensive materiel systems identify specific cumulative (5) The approach employed to allocate and monitor use of com-
exit criteria for software, particularly in the critical technical param- Puteér hardware resources. .
eters, for each testing phase in the TEMP to demonstrate continuing (6) Provisions for acquirer access to developer team facilities for
maturity growth prior to committing to major system tests. The PM Teviewing software products and activities. o
is responsible for the TEMP and is assisted by the test IPT in its (7) Plans for conducting, monitoring and assessing risk for each

preparation (see para 4-6). Refer to AR 73-1 and DA Pam 73-2 foidetailed software development activity that applies to the effort.
details (including software-specific TEMP considerations). (8) Methods and mechanisms to implement configuration man-
(1) Minimum acceptable operational performance requirements. agement, quality assurance, internal product evaluation and correc-

These are the critical operational effectiveness, suitability, and sur-t'Ve9 a():;lon on thde pr:’C?S.S.eSt and productf de;c_ripetdt b3|’q t_helplan.
vivability parameters and constraints that must be achieved by the 'e( ) anpgogosreoacsﬁ Of JO'tnh managdemten and joint technical re-
system in order for it to be formally accepted by end users. Views pp es for their conduct.

- . .. (10) Plans for other related activities such as managing risk,
(2) Critical technical parameters. These are the measurable CrItI'managing subcontractors, handling security and privacy issues, in-
cal system characteristics that when achieved, allow the minimum

; . .terfacing with IV&V agents, applying software management indica-
acceptable operational performance requirements to be attai 'ang metrics 9 » apPyIng 9 indica

These chgracterlstlgs oftgn depend on software. (11) A description of how the developer’'s organization supports
(3) Critical operational issues. These are concerns related to operge project and identifies resources.

ational effectiveness, suitability, and survivability that must be ex- (12) The organization of software activities into an integrated
amined in operational test and evaluation to determine the systeM'yroject network and all applicable schedules.

DA PAM 73-7 « 25 July 1997 21



c. Software installation plan (SIP). The developer prepares a SIPthe developer is described in the Evaluation Activities paragraph of
when involved in installing software at user sites and the process isits corresponding activity elsewhere in this pamphlet.
complex enough to require documented instructions. The tasks allo- d. Monitoring software products and processes against plans by
cated to the developer, user, computer operations staff or othersnembers of the software T&E team occurs over the life of the
participating in the installation are described, including site specific system.
information, if applicable. Tasks typically include preparing the
site(s), documenting installation instructions, training users and con-5-11. Metrics
verting from existing systems. The metrics marked with an x in table 5-1 apply to planning and
d. Software transition plan. The STrP is prepared by thaversight. All metrics used on a program should be routinely exam-
developer and identifies the hardware, software and other resourcemed as part of the oversight process.
needed for life-cycle support of deliverable software. It includes the
developer’s plans for transitioning deliverable items to the appropri-
ate support agency and addresses training of support personnel.
e. Software QA plan. In this pamphlet, the software QA plan

Table 5-1
Metrics applicable to planning and oversight

(SQAP) term refers to the documented policy, plans, and procedureg\pplies Metric

of the acquirer, in this case the Government, for accomplishing they Cost

tasks comprising quality conformance assessment of software prody Schedule

ucts and activities throughout a software-intensive system’s lifetime. x Computer resource utilization
Software QA material may alternatively be documented in the over-x Software engineering environment
all system’s QA plan. See chapter 8 for more information on quality x Requirements traceability
assurance. X Requirements stability

X Design stability

f. Software CM plan. In this pamphlet, the software CM plan Complexity

(SCMP) term refers to the documented policy, plans, and procedure Breadth of testing
of the acquirer for accomplishing configuration management tasks, Depth of testing
involving software products and activities throughout a software- Fault profiles
intensive system’s lifetime. Software CM material may alternatively x Reliability

be documented in the overall system’s CM plan. See chapter 8 for
more information on configuration management.

g. Related plans. Other system level plans that may influence the
implementation and test of software-intensive systems are—

(1) Basis of issue plan and qualitative and quantitative personnel
requirements information. See AR 71-2, AR 71-9 and DA Pam
70-3 for the basis of issue plan (BOIP) and qualitative and quantita-
tive personnel requirement information (QQPRI).

(2) Integrated logistics support plan. See AR 700-127, DA Pam
70-3 and DA Pam 700-55 for the integrated logistics support plan
(ILSP).

(3) Reliability, availability, maintainability rationale report. See
AR 71-9 and DA Pam 70-3 for the reliability, availability, main- 5_13 General

tainability (RAM) rationale report (RRR). _ a. During this activity, the organization that is to develop or

(4) System manpower and personnel integration managemgakorm maintenance on software, establishes a suitable environ-
plan. See AR 602-2 and DA Pam 70-3 for the system manpowelnent to manufacture or sustain software products. The term*
and personnel integration (MANPRINT) management plan (SMMP). developer” used below is synonymous with* maintainer.”

b. If a multiple build system or software acquisition strategy is in
effect, this activity for a build means establishing the environment
needed to complete that build.

5-12. Decision criteria

Planning and oversight is an ongoing activity. However, the prepa-
ration, coordination and updating of plans identified above should
be adequate and timely enough to support the activities guided by
those plans. This condition is noted when a plan is identified as an
entry criterion for an activity.

Section Il
The Software Development Environment

5-10. Evaluation activities

a. Per AR 73-1, the PM provides Army testers and evaluators the
opportunity to participate in preparing the testing portion of requests
for proposals to ensure that T&E requirements are adequately reg_q4 Objective
flected in contractual documents. Likewise, software support person-r, 6bjective of this activity is to put in place the tools, controls
nel ensure that applicable computer resource policy is invoked inand supplementary resources necessary to facilit’ate software
work statements and that deliverables are adequate for life time roduction
software maintenance. P '

b. The software T&E community provides input and review of ¢ ;5 Entry criteria
in-house work directives and other work tasks relating to software g ¢icient knowledge of the software production job to be per-
development and TEE as well as contract statements of W?E#med and plans for the resources necessary to support it should
(SOWs). A checklist for reviewing these documents and sample 5eoir prior to this activity. Plans for the software development
contract clauses are provided in appendix B. Examples of some o nvironment were documented in the developer's SDP and the
the issues assessed are— CRLCMP.

(1) Collection or delivery of metrics.

(2) Ensuring requirements and design reviews are adequate ang_16. Test activities

appropriate to the acquisition strategy. Testing during this activity is typically done informally by the
(3) Delivery of software problem reports. developer to confirm that elements of various development environ-
(4) Allowance for hooks, ports, etc. to enable collecting test dataments operate as intended.

via instrumentation.
(5) Appropriate use of modeling or simulation in lieu of, or to 5-17. Evaluation activities

augment, testing. a. CE actions consist of periodically assessing the plans and
(6) Opportunities for user involvement and feedback during the implementation status of applicable software development environ-
development process. ments in the areas of software engineering, software test, software

c. The assessment of information in specific plans prepared bydevelopment library, software development files and nondeliverable

22 DA PAM 73-7 « 25 July 1997



software. The assessments are typically performed by PM, SQA,Section IV
IV&V or LCSEC personnel. System Requirements Analysis
b. Assessment criteria include determinations whether—

(1) Evidence exists that elements of an environment can perform - . - .
a. The developer participates in defining and recording the re-

their intended functions. quirements to be met by the system during this activity. This in
Of(iéti'\?/ﬁg;'rfﬁafl\?v?ﬂegfeOtfhggqenv'ronmem are in place in advancecludes documenting the methods to be used to ensure that each

. . . . requirement has been met.
(3) Elements of, or information from, different environments are

il ble of bei hared with . P b. If a multiple build system acquisition strategy is in effect, a
compatible or capable of being shared without excessive re Ormat'system's requirements may not be fully defined until its final build.
ting or re-entry of data.

System requirements analysis for a given build, however, means

(4) The environments are integral, not ancillary, to softwaggfining the system requirements allocated to that build.
production.

(5) Adequate and sufficient controls are in place to assure both5-21. Objective

5-20. General

development environment and software product integrity. The objective of this activity is to identify and document the func-
(6) The environments provide adequate information to managetional, performance, interface, and other acquirer-imposed require-

software development. ments for a system.

5-18. Metrics 5-22. Entry criteria

Defined and documented user requirements are a prerequisite to this

a. The metrics marked with an x in table 5-2 apply to the o
activity.

software development environment.

b. The schedule metric should show when critical items in the 5 >3 Tast activities
development environment will be available and usable and the activ- a 'Tests are not inherent during system requirements analysis, but
ities that depend on them. While application dependent, examples °?nay be planned and performed at the discretion of the user, M’AT-
critical items are custom test fixtures and test articles, nondevelop-DEV or FP, PM, and/or developer. These test activities may take the
ment software, and training. form of controlled experiments more often than formal tests.

c. The software engineering environment (SEE) metric applies as p_|f system qualification testing applies to the build, the
an indicator of past ability to establish and maintain an adequatedevebper prepares a system test plan to document the system’s
development environment. qualification tests. For software-intensive systems and information

d. The computer resource utilization (CRU) metric can be used to systems, test requirements are typically documented in the STP.
monitor utilization of development resources. Unanticipated demand
for resources could result in delays in software production scheduless—24. Evaluation activities
or additional costs to augment the environment at a later time.  a. Continuous evaluation activities performed within the T&E
community need to include user representatives. Activities per-
formed are—

(1) Review of the system’s OCD to determine whether adequate
analysis and understanding of user inputs, feedback and needs has

Table 5-2
Metrics applicable to software development environment

Applies Metric taken place to ensure system requirements are accurate and
X Cost complete.
X Schedule (2) In-depth reviews of the SSS and interface requirements speci-
X Computer resource utilization fication (IRS) for clear and complete descriptions of requirements
X Software engineering environment regarding topics such as—
Requirements traceability (a) Required states and modes of operation.

Requirements stability
Design stability
Complexity

(b) Capabilities or functions of the system.
(c) External and internal interfaces.

Breadth of testing (d) Installatior_l specific depen_dencies.

Depth of testing (e) Safety, privacy and security.

Fault profiles (f) Use or incorporation of reused and nondevelopment items.
Reliability (g) Training and personnel related considerations.

(h) Priority, timing, sequencing, and criticality of requirements,
functions, or interface characteristics.
5_19. Decision criteria (3) Assessment of requirements testability.
Representative products, documents and decision criteria typically_ (4) Tracing from system requirements back to user requirements.
addressed during the software development environment activity are'he CBTDEV ’or FP. participates in the requirements trace to ensure
shown in table 5-3. that the users’ requirements have been properly interpreted by sys-
tem specification writers.

(5) Maximum allowable use of computer resources and the con-

Table 5-3 ditions under which utilization measurements should be taken.

Software development environment decision criteria (6) Verifying that the ability to collect performance data during

Primary responsibility | Principal products Decision criteria system-level tests, including formal Government tests, is addressed.

affected (6) Implementation and analysis of applicable metrics.

SIW Developer & | SDP Adequate coverage of de- (7 R’ewew of _the _draft STP for gippllcablllty and 1c0n5|stency of

PM velopment environments system’s qualification test(s) with the system’s SSS and IRS
and their support over the requirements. _ o _
work period b. If needed to resolve open issues or address areas of risk identi-

fied in the evaluation process, a formal system requirements review

S/W Developer & | Metrics Report(s) | Acceptable degrees of S/W is appropriate.

PM, Gov't. SQA or development resource allo-
V&V cations and utilization

DA PAM 73-7 « 25 July 1997 23



5-25. Metrics

a. The metrics marked with an x in table 5-4 apply to system

requirements analysis.

Table 5-4

Metrics applicable to system requirements analysis

Applies

Metric

x

Cost
Schedule

Computer resource utilization
Software engineering environment
Requirements traceability
Requirements stability

Design stability
Complexity
Breadth of testing
Depth of testing
Fault profiles
Reliability

b. Requirements should show an acceptable degree of complete

ness, traceability and stability.

c. The SEE metric helps assess the capabilities of various soft-
ware developers and how well their products meet requirements.

5-26. Decision criteria

and detailed design may be documented in succession or in parallel
depending on the quantity of units comprising the design and the
complexity of their interactions.

c. If a multiple build system acquisition strategy is in effect, a
system’s design may not be fully defined until the final build.
System design for a given build, however, means defining the de-
sign necessary to meet the requirements to be implemented in that
build.

5-28. Objective

The objective of this activity is to define all design characteristics
necessary to describe major system components as hardware config-
urations items (HWCIs), CSClIs or manual operations and the inter-
actions among them.

5-29. Entry criteria

Sufficient system requirements analysis should occur prior to this
activity in order to allocate system requirements to system design
entities.

5-30. Test activities

Tests are not inherent during system design, but may be planned and
performed at the discretion of the user, MATDEV or FP, PM, and/
or developer. These test activities may take the form of controlled
experiments more often than formal tests.

5-31. Evaluation activities
a. Continuous evaluation includes—

Representative products, documents and decision criteria typically

(1) In-depth reviews of system/subsystem design description

addressed during system requirements analysis are shown in tabl%SDD), interface design description (IDD), DBDD for clear and

5-5. Items marked “ final” should contain comprehensive material
that corresponds to the current build. Whether performed through

series of informal walk-throughs and assessments or by means o
formal reviews, the issues of testability, performance, timing, and

interfaces should be adequately addressed and documented prior to

completing an iteration of the system requirements analysis activity.

complete descriptions of system-wide decisions and a system archi-
ecture that, as applicable—

(a) Provides growth capability.

(b) Addresses interoperability requirements.

(c) Addresses safety, security, and privacy issues.

Table 5-5

System requirements analysis decision criteria

Primary responsibility

Principal products
affected

Decision criteria

User Representa- | UFD Final
tive and MATDEV

PM, MATDEV and |SSS, IRS® Draft
Developer OCD Draft

Developer and PM

System require-
ments review(s), if
required

Open issues resolved

System or S/W
Developer & PM,
Gov't. SCM, Gov't.

Requirements
Trace(s)

Updated

SQA o orivV&Vv Metrics Reports Acceptable degrees of
system requirements
traceability and stability

Notes:

1 System interface material may alternatively be documented in the IRS.

Section V
System Design

5-27. General

(d) Identifies component status such as: reused, reengineered,
developed for reuse, new development, etc.

(e) Allocates computer hardware resources to design components
and estimates capacity allotted to each component.

(f) Addresses all interfaces among system components as well as
external system interfaces.

(2) Assessment of design testability.

(3) Tracing from system design components back to system
requirements.

(4) Assuring user interface designs meet user requirements.

(5) Reviewing the use of nondeveloped software in the design to
consider percent of modification, availability of documentation, and
future testability or supportability issues.

(6) Implementation and analysis of applicable metrics.

b. If needed to resolve open issues or address areas of risk identi-
fied in the evaluation process, a formal system design review is
appropriate.

5-32. Metrics
a. The metrics marked with an x in table 5-6 apply to system
design.

Table 5-6

Metrics applicable to system design

Applies Metric

X Cost

X Schedule

X Computer resource utilization

a. During this activity system requirements are iteratively defined X
and recorded by the developer as design decisions and implementa‘
tion descriptions. This includes proof of traceability between system*
requirements and the hardware and software configuration items
comprising the design.

b. The levels of system-wide design, system architectural design

24 DA PAM 73-7 « 25 July 1997

Software engineering environment
Requirements traceability
Requirements stability

Design stability

Complexity

Breadth of testing

Depth of testing

Fault profiles



Table 5-6
Metrics applicable to system design—Continued

Applies Metric

Reliability

5-35. Objective

The objective of this activity is to identify and document the func-
tional, performance, interface, and other acquirer-imposed require-
ments for a CSCI.

5-36. Entry criteria
Sufficient system requirements analysis and system design should
have been completed prior to this activity in order to identify and

b. Requirements should show an acceptable degree of completeallocate system requirements to software.

ness, traceability, and stability.

c. Specific computer resources are identified in this activity and
allocations of their total capacities to the software design compo-
nents are made.

d. The SEE metric helps assess the capabilities of various soft-

ware developers and how well their products meet requirements.

5-33. Decision criteria

5-37. Test activities

a. Tests are not inherent during software requirements analysis
but may be planned and performed at the discretion of the developer
and PM.

b. If software qualification testing applies to the build, the
developer prepares a preliminary STP in parallel with requirements
analysis to document the CSCI’'s qualification tests (see sec Il of
this chapter).

Representative products, documents, and decision criteria typically . .
addressed during system design are shown in table 5-7. It&m38: Evaluation activities

marked “ final” should contain comprehensive material that corre-
sponds to the current build. Whether performed through a series o
informal walk-throughs and assessments or by means of formal
reviews, the issues of testability, performance, interfaces and main

tainability should be adequately addressed and documented prior to

completing an iteration of the system design activity.

Table 5-7
System design decision criteria

Primary responsibility

Principal products

Decision criteria

a. Continuous evaluation activities performed within the T&E

1;:ommunity need to include user representatives. Activities per-

formed are—
(1) In-depth reviews of SRS, IRS for clear and complete descrip-
tions of requirements regarding topics such as—
(a) Required states and modes of operation.
(b) Capabilities or functions the CSCI implements.
(c) External and internal interfaces.
(d) Installation specific dependencies.
(e) Safety, privacy and security.
() Maximum allowable use of computer resources and conditions

affected under which computer resource measurements apply.
- (g) Use or incorporation of reused and nondevelopment item
Developer & PM SSDD Final software.
IDD, DBDD 1 Final (system design sec- (h) Communication network, training, and personnel related

considerations.

(i) Priority, timing, sequencing, and criticality of requirements,
functions, or interface characteristics.

() Qualification method(s) for each requirement.

(2) Assessment of requirements testability.

(3) Tracing from software requirements back to system require-
ments. The CBTDEV or FP patrticipates in the requirements trace to
ensure that the users’ requirements have been properly interpreted
by software specification writers.

tions)

System design
review(s), if
required

Open issues resolved

When SSDD, IDD are
approved, they become
part of functional
baseline

Updated

System or S/W Requirements

Developer & PM, Trace(s) (4) Implementation and analysis of applicable metrics.
ﬁ/%:’vt- SQA or Metrics R A ble . (5) Review of the draft STP for applicability and consistency of
efrics Report(s) | Acceptable degrees of: | CSCI qualification test(s) with the CSCI's SRS, IRS requirements,
requirements traceability SN
and stability; CRU and proposed qualification me@hods. o _
allocations b. If needed to resolve open issues or address areas of risk identi-
fied in the evaluation process, a formal software requirements re-
Notes:

view is appropriate.
1 1DD or DBDD material may alternatively be documented in the SSDD

5-39. Metrics
a. The metrics marked with an x in table 5-8 apply to software

. requirements analysis.
Section VI

Software Requirements Analysis

Table 5-8
5-34. General Metrics applicable to software requirements analysis
a. During this activity the software requirements to be met by a Applies Metric
CSCI are defined and recorded by the developer. This includes, Cost
documenting the methods to be used to ensure that each requiremept Schedule

has been met and proof of traceability between CSCI requirements«
and system requirements. X

b. If a multiple build software acquisition strategy is in effect, a X
CSClI’s requirements may not be fully defined until the final build.
Software requirements analysis for a given build, however, means
defining the CSCI requirements allocated to that build.

Computer resource utilization
Software engineering environment
Requirements traceability
Requirements stability

Design stability

Complexity

Breadth of testing

Depth of testing

Fault profiles

Reliability

DA PAM 73-7 « 25 July 1997 25



b. More specific allocations of computer resource utilization be- software requirements analysis activity necessary for the level of
come available through this activity. The allocations should be com- software design being performed.

pliant with the contract and higher

level specifications.

c. Requirements should show an acceptable degree of complete5—44. Test activities

ness, traceability and stability.

a. Specific tests are not inherent during software design, but may

d. The SEE metric helps assess the capabilities of various soft-0e planned and performed at the discretion of the developer and
ware developers and how well their products meet requirements.PM. Demonstrations of evolving capability by means of prototypes,

5-40. Decision criteria

mockups of user interfaces or other mechanisms are recommended,
however, to elicit user feedback and changes in the design prior to

Representative products, documents, and decision criteria typicallysignificant commitment of design to code.

addressed during software requirements analysis are shown in table b. If software qualification testing applies to the build, the
5-9. Items marked “ final” should contain comprehensive material developer completes the STP to document the CSCl's qualification
that corresponds to the current build. Whether performed through atests (see sec Il of this chapter).

series of informal walkthroughs and assessments or by means of

formal reviews, the issues of testability, performance, timing, and 5-45. Evaluation activities

interfaces should be adequately addressed and documented prior to & Continuous evaluation activities performed at this time focus
completing an iteration of the software requirements analy$§is analysis of the proposed software design to accurately reflect its

activity. software requirements and to ascertain its technical adequacy to
achieve allocated system requirements. To accomplish this
includes—

Table 5-9

Software requirements analysis decision

criteria

Primary responsibility

Principal products
affected

Decision criteria

S/W Developer &
PM

SRS, IRS t
STP
Software require-

ments review(s), if
required

Final

Draft

Open issues resolved
When SRS, IRS, STP are

approved, they become part
of allocated baseline

S/W Developer &

Requirements

Updated

PM, Gov't. SCM, Trace(s)

Gov't. SQA or

V&V Metrics Report(s) | Acceptable degrees of:
requirements traceability
and stability; CRU
allocations

Notes:

1 |RS material may alternatively be documented in the SRS.

Section VII

Software Design

5-41. General

a. During this activity the software requirements of a CSCI are
iteratively defined and recorded by the developer as design dec
sions and implementation descriptions. This includes proof Ayplies
traceability between CSCI requirements and the software units com-,

prising the design.

X

b. The levels of CSCl-wide design, CSCI architectural design x
and detailed design may be documented in succession or in parallet
depending on the quantity of units comprising the design and thex

complexity of their interactions.

c. If a multiple build software acquisition strategy is in effect, a *
CSClI's design may not be fully defined until the final build. Soft-
ware design for a given build, however, means defining the design
necessary to meet the CSCI requirements to be implemented in that

build.

5-42. Objective

The objective of this activity is to define all design characteristics

necessary for the production of actual software entities.

5-43. Entry criteria
The CSCI should have successfully completed those aspects of itiess, traceability, and stability.

26

(1) In-depth reviews of the software design description (SDD),
IDD and DBDD for validity and completeness of the technical
design, such as—

(a) Design decisions and conventions regarding inputs and out-
puts to other systems, HWCIs, CSCls, and users.

(b) Structure and interrelationships of the units comprising the
CSCl.

(c) Flow of data and execution control.

(d) Recovery from malfunctions and handling of unexpected con-
ditions or data.

(e) Computer resource allocations for items such as storage,
memory and communications/network equipment.

(2) Review of user interfaces for simplicity, logical sequencing,
consistency, and other human factors aspects.

(3) Tracing software design entities back to software
requirements.

(4) Implementation and analysis of applicable metrics.

(5) If software qualification testing applies to the build, the final
STP is reviewed for applicability and consistency of CSCI qualifica-
tion test(s) with the CSCI's SRS and IRS requirements.

b. If needed to resolve open issues or address areas of risk identi-
fied in the evaluation process, a formal software design review is
appropriate.

5-46. Metrics
a. The metrics marked with an x in table 5-10 apply to software
design.

Table 5-10

i_Metrics applicable to software design

Metric

Cost

Schedule

Computer resource utilization
Software engineering environment
Requirements traceability

X Requirements stability
Design stability
X Complexity

Breadth of testing
Depth of testing
Fault profiles
Reliability

b. CRU allocations to lower levels of software should not exceed
overall requirements and should be compliant with the allocations in
the specifications.

c. Requirements should show an acceptable degree of complete-

DA PAM 73-7 « 25 July 1997



d. Program design language (PDL) is often used during this ac-6-2. Scope
tivity. If complexity values for units exceed PDL thresholds, a. The sections in this chapter parallel the activities of the con-
redesign may be necessary unless an adequate rationale is givesolidated software standards of paragraph #-but have been

e. The SEE metric helps assess the capabilities of various soft-€xpanded to include considerations beyond those of the developer.

ware developers and how well their products meet requirements. The events described here span implementation of software units
through Government operational testing.

5-47. Decision criteria b. The applicability of an activity to any given program and the
Representative products, documents, and decision criteria typicallydePth to which it is carried out is dependent on overall system
addressed during software design are shown in table 5-11. |tem§actors such as ach|S|t|o_n_§trategy e_md level of technical risk.
marked “ final” should contain comprehensive material that corre- c. Many_of the T&E activities desc_rlb_ed below are repeated _for
each iteration of the design. Test activities are also often combined

sponds to the current build. A series of informal walk-throughs and hen test obiect tible. the intearity of th Its |
assessments is recommended to address the majority of noncritica €N test opjectives are compativle, the integrity of the resufts 1S
not jeopardized, and independence of evaluations will not be

design issues. However, prior to completing an iteration of the ;
compromised.

software design activity, the issues of testability, flow of control and During initial levels of software develooment testing. the
data, error recovery, and interfaces, particularly user interfacaeg' uring initi v W velop Ing,

should be adequately addressed and documented.

Table 5-11

Software design decision criteria

Primary responsibility

Principal products
affected

Decision criteria

S/W Developer &
PM

SDD, IDD, DBDD !
STP
Preliminary design

review(s), if
required

Draft 2
Final 2

Open issues resolved

S/W Developer &
PM, Gov't. SQA or
V&V

Requirements
Trace(s)

Metrics Report(s)

Updated 2

Acceptable degrees of:
requirements traceability
and stability; CRU
allocations 2

S/W Developer &
PM

SDD, IDD, DBDD *

Detailed design
review(s), if
required

Final 3

Open issues resolved

S/W Developer &
PM, Gov't. SQA or
V&V

Requirements
Trace(s)

Metrics Report(s)

Updated 3

Acceptable degrees of: re-
quirements traceability and
stability; CRU allocations;
design stability; complexity,
if PDL is used 3

Notes:

1 IDD and DBDD material may alternatively be documented in the SDD.

2 Preliminary design.
3 Detailed design.

Chapter 6
Test Activities

Section |
General

6-1. Purpose

eVeloper has control over the T&E process. Software quality assur-
ance and verification and validation (V&V) efforts are significant
during each level of testing. Responsibility and control of testing
shifts to Government agencies, the acquirer and user, as testing
progresses.

6—3. Objective

The objectives of test activities are to verify that the item under test
operates predictably and reliably and to detect malfunctions or
omissions.

Section |
Software Implementation and Unit Testing

6-4. General

a. The developer transforms the software’s design into computer
programs and data structures during this activity. Each implemented
data unit or program unit is tested to cover all aspects of its detailed
design. Unit testing is the lowest level of test executed on software.

b. If a multiple build software acquisition strategy is in effect,
this activity for a CSCI is not complete until that CSCI’s final build.
Software implementation and unit testing for a build includes those
units, or parts of units, needed to meet the requirements to be
implemented in that CSCI's build.

6-5. Objective

The objective of this activity is to produce software program and
data entities. The purpose of unit testing is to validate requirements
expressed in the detailed design descriptions and software require-
ments specifications. In addition, unit testing is performed to ensure
that all source statements in a unit have been executed, each condi-
tional branch has been taken, and that all boundary values (for
example, minimum-maximum values) and edit criteria are tested.

6-6. Entry criteria
The detailed design of a unit should be completed prior to its
implementation and test.

6—7. Test activities

a. The developer establishes test cases, test procedures and test
data for each software unit and records this information in the
appropriate SDFs.

b. If a set of benchmark test files (BMTF) exists, it should also
be used as test data.

c. The developer conducts unit testing in accordance with the test
cases, procedures and data in the SDFs.

d. Results of unit testing are recorded in the SDFs.

e. Test results are analyzed, software revised and retested, and
the SDFs and other software products updated based on the test
results.

f. The operating environment for unit testing is usually a local

This chapter summarizes activities comprising software productiontest ped system.
and testing. Opportunities and procedures to enhance the process
through CE are identified.

6-8. Evaluation activities
a. To gain insight into the software developer’'s progress, SDFs

DA PAM 73-7 « 25 July 1997 27



are reviewed. These evaluations are usually conducted by an indefable 6-2

pendent organization whose management structure is separate frorfoftware implementation and unit testing decision
the software developer's management. A developer’s quality assur-LCriteria—Continued

ance group or the Government’s SQA, V&V or IV&V organizations Primary responsibility | Principal products Decision criteria

are examples. The evaluations verify that— affected
(1) Software is developed in accordance with the .detal'l.ed qu|gn Metrics Report(s) | Acceptable degrees of: re-
and applicable development and coding standards identified in the quirements traceability and
SDP. stability, computer resource
(2) Results and analysis of unit testing are recorded in the SDFs utilization, design stability,

breadth and depth of test-

and revisions to software products, including unit test cases, proce- . X
ing, fault profiles

dures, and data, continue to track requirements.

b. Static analysis, data flow analysis and code walk-throughs are
performed by the developer to assess software modularity, quality, )
and maintainability. Section Il _

c. Completed and published system documentation and trainingUnlt Integration and Testing
packages are not normally available for unit level testing. However, 6-11. General

if such documenj[atlon is avallaple, it shquld also bg reviewed. a. During this activity, the developer integrates two or more
d. Implementation and analysis of applicable metrics. software units and tests the composite software to ensure it works as
intended. This process continues until all units in a CSCI have been

6-9. Metrics integrated and tested.
a. The metrics marked with an x in table 6-1 apply to software b. If a multiple build software acquisition strategy is in effect,
implementation and unit testing. this activity for a CSCl is not complete until that CSCI’s final build.

Unit integration and testing for a build means integrating software
developed in the current build with other software developed in that
and previous builds and testing the results.

c. Historical equivalent activities are: CSC integration and tes-

Table 6-1
Metrics applicable to software implementation and unit testing

Applies Metric ting—MSCR; SDT module/program testing—AIS.

X Cost .

X Schedule 6-12. Objective

X Computer resource utilization The objective of this activity is to produce a CSCI which has

X Software engineering environment completed developer internal CSCI testing covering all aspects of

X Requirements traceability CSCl-wide design and CSCI architectural design. All integrated

x Requirements stability units should accept valid inputs and produce correct outputs.

X Design stability

X Complexit -

X Breagth o%ltesting 6-13. Entry criteria .

X Depth of testing The lowest level units should successfully complete the implementa-

X Fault profiles tion and unit test activity prior to their integration with other units.
Reliability

6-14. Test activities
a. The developer establishes test cases, test procedures and test
b. Measured values for computer resource utilization becordata for conducting unit integration and testing and records this

available at this time. information in the appropriate SDFs.
c. With the start of unit testing, data to support the breadth and b. Benchmark test files are used as test data, if available.
depth of testing metrics can be collected and analyzed. c. The developer conducts unit integration testing in accordance

d. As coded units are placed under project CM control, values for With the test cases, procedures, and data in the SDFs.

fault profiles and design stability become available as a result of d- Results of unit integration testing are recorded in the SDFs.
testing. e. Test results are analyzed, software revised and retested, and

ghe SDFs and other software products updated based on the test
résults.

f. The operating environment for unit integration and testing is
- o usually a local test bed system.
6-10. Decision criteria . . o

. . L i g. With much of the software integrated, limits and bounds are

Representative products, documents and decision criteria typicallyiested and multiple paths executed to ensure that integration is
addressed during implementation and unit testing are shown in tablebroceeding in a robust manner.
6—2_. Only unlts_ which have been successfully tested are permitted t0 |, Tests addressing run time efficiency and stressing the software
be integrated into components or programs for the next level of 5t the limits of its specified requirements are also performed.

e. If complexity values for coded units exceed threshold
redesign should occur unless an adequate rationale is given.

testing. i. All discrepancies, malfunctions, and errors should be docu-
mented in problem/change reports in accordance with paragraph 2—2
Table 6-2 f. o . , .
Software implementation and unit testing decision criteria j- If CSCI qualification testing applies to the build, the developer
Primary responsibility | Principal products Decision Criteria can document the appropriate qualification test cases in the software
affected test description (STD) as part of the CSCI qualification test activity.
S/W Developer SDFs Adequate evidence of unit 6-15. Evaluation activities
development and testing a. Unit integration and testing is a developer internal activity. To
S/W Developer Requirements Updated gain insight into this process, software quality assurance, I\_/&V,
and Gov't. SQA or | Trace(s) and V&V personnel generally perform evaluations on-site and
V&V

28 DA PAM 73-7 « 25 July 1997



report to the other members of the software T&E community. The Section IV
SDFs are reviewed to verify— CSCI Qualification Testing
(1) Software is integrated in accordance with the documented

unit integration and test approach and procedures in the SDP. 6_a18bLC|;r(ienngert?1Iis activity, the developer prepares and demonstrates
co(ré)e dR(iansutlrt]se aSnganalysm of unit integration and testing are "€ all the test cases necessary to ensure compliance with the CSCl's

. , ) L software and interface requirements.
(3) The developer revises software products, including unit inte- it 5 myitiple build software acquisition strategy is in effect,

gration test cases, procedures, and data, based on test results. Thgs activity for a CSCI is not complete until that CSCI's final build,
developer also ensures that these revisions continue to addgeSSossibly later builds involving items with which the CSCI is

requirements.

required to interface.

b. The developer performs static analysis, data flow analysis and c. Historical equivalent activities are: CSCI Formal Qualification
code walk-throughs to assess software modularity, quality, arest (FQT) - MSCR; SDT cycle/system testing (partial) - AIS.

maintainability.

c. Completed and published system documentation and training6—19. Objective o o
packages are not normally available for unit integration testing. The objective of CSCI qualification testing is to demonstrate to the
However, if such documentation is available, it should also be acquirer the CSCI's ability to meet its requirements as specified in

reviewed.

d. Implementation and analysis of applicable metrics.

6-16. Metrics

a. The metrics marked with an x in table 6-3 apply to unit

integration and testing.
b. Breadth and depth of testing become more refined in this acquirer.

activity.

its software and interface requirements specifications.

6-20. Entry criteria

a. The CSCI should successfully complete unit integration and
testing, including developer internal CSCI testing.

b. Test preparation effort, including STD preparation and dry run,
should occur prior to running a formal test witnessed by the

c. As unit integration and testing proceeds, the design progressb—21. Test activities

component of the design stability metric should indicate more and

more units are being entered into CM.

6-17. Decision criteria

Representative products, documents and decision criteria typicallyfO
addressed during unit integration and testing are shown in table 6—4d

Table 6-3

Metrics applicable to unit integration and testing

Applies

Metric

X X X X X X X X X X

Cost

Schedule

Computer resource utilization
Software engineering environment
Requirements traceability
Requirements stability
Design stability

Complexity

Breadth of testing

Fault profiles

Reliability

Table 6-4
Unit integration and

testing decision criteria

Primary responsibility

Principal products Decision criteria

affected

S/W Developer

SDFs Adequate evidence of unit

integration and testing

S/W Developer
and Gov't. SQA or
V&V

Requirements
Trace(s)

Updated

Metrics Report(s) | Acceptable degrees of: re-
quirements traceability and
stability, computer resource
utilization, design stability,

breadth and depth of test-

ing, fault profiles

a. The developer establishes test preparations, test cases, test
procedures, and test data for CSCI qualification testing and records
this information in the appropriate STD.

b. Benchmark test files are used as test data, if available.

c. Prior to an acquirer witnessed test, the developer should per-

rm a dry run of the test in accordance with the test cases, proce-
ures and data in the STD. The results are recorded in the

appropriate SDFs and test cases or procedures are updated a:

needed.

d. The developer conducts CSCI qualification testing in accord-
ance with the test cases, procedures, and data in the STD.

e. All discrepancies, malfunctions, and errors will be documented
in problem/change reports in accordance with paragrapH, 2
entered into the developer's corrective action system.

f. Results of CSCI qualification testing are recorded in a software
test report (STR).

g. Test results are analyzed, software revised and retested at all
necessary levels, and the SDFs and other software products updated
based on the results. The acquirer should be notified in advance
when qualification retesting is to occur.

h. The operating environment for CSCI qualification testing is
usually a local test bed system. However, qualification on target or
production representative system is preferred, particularly for em-
bedded MSCR.

6—22. Evaluation activities

a. Continuous evaluation activities include—

(1) Review of the STD to ensure CSCI qualification test prepara-
tions, test cases, and test procedures are adequate to verify compli-
ance with STP, SRSs and interface requirements specifications
(IRSs).

(2) Assessment of test drivers for their ability to induce data and
processing loads stated in the operational mode summary/mission
profile (OMS/MP). See AR 71-9 for details on the OMS/MP.

(3) Ensuring traceability from each STD test case to its CSCI and
software interface requirements and, conversely, from each CSCI
and applicable software interface requirement to the test case(s) that
address it.

b. Implementation and analysis of applicable metrics.

c. If needed to resolve open issues or address areas of risk identi-
fied in the evaluation process, a formal test readiness review is
appropriate.

DA PAM 73-7 « 25 July 1997 29



6—23. Metrics HWCI integration and testing for a build means integrating software
The metrics marked with an x in table 6-5 apply to CSCI qualifica- and hardware developed in the current build with other CSCI/HWCI
tion testing. developed in that build and previous builds, and testing the results.

c. Historical equivalent activities are: system integration testing -
MSCR; SDT cycle/system testing (partial)—AIS.

Table 6-5
Metrics applicable to CSCI qualification testing 6—26. Objective
Applies Metric The objective of this activity is to produce a system which has
» Cost completed developer internal system testing and meets its architec-
X Schedule tural design requirements.
X Computer resource utilization oo

Software engineering environment 6-27. Entry_cr_lterla . .
X Requirements traceability a. The unit integration and testing for a CSCI should have suc-
X Requirements stability cessfully completed prior to the CSCI’s integration with other con-
X Design stability figuration items.

Complexity b. If this activity is followed by system qualification testing,
X Breadth of testing applicable CSCI qualification testing should also have occurred.
X Depth of testing
X Fault profiles 6-28. Test activities

Reliability a. The developer establishes test cases, test procedures and test

data for conducting CSCI/HWCI integration and testing and records
the information in the appropriate SDFs.
6—24. Decision criteria b. Benchmark test files are used as test data.
Representative products, documents and decision criteria typically €. The developer conducts CSCI/HWCI integration testing in ac-
addressed during CSCI qualification testing are shown in table 6-6.cordance with the test cases, procedures and data in the SDFs.
ltems marked “ final” should contain comprehensive material that d. Results of CSCI/HWCI integration testing are recorded in the
corresponds to the current build and level of qualification testing. SDFS.
e. Test results are analyzed, software revised and retested, and
the SDFs and other software products updated based on the test

Table 6-6 results.
CSCI qualification testing decision criteria f. The operating environment for CSCI/HWCI integration and
Primary responsibility | Principal products Decision criteria testing usually consists of target or production representative hard-
affected ware. This may be supplemented or substituted with local test bed
PM & Developer | Test readiness Ready to perform CSCI hardwa_re only with the acquirers ap_proval._ .
with SQA and review(s), if qualification test(s) g. With many of the configuration items integrated, limits and
V&V required, to bounds are tested, and multiple paths executed to ensure that inte-
resolve open gration is proceeding in a robust manner.
issues h. Tests addressing run time efficiency and stressing the software
S/W Developer STD Draft at_the Ilmlts of |ts_specmed requirements are also performed.
i. All discrepancies, malfunctions, and errors should be docu-
Dry run of CSCI qual. test in mented in problem/change reports in accordance with paragraph 2—2
accordance with STD f.

_ j- If system qualification testing applies to the build, the
STD Final developer can document the appropriate qualification test cases in
the STD as part of the system qualification test activity.

STR Final
SIW Developer Requirements Updated 6-29. Evaluation activities . )
and Gov't. SQA or | Trace(s) a. CSCI/HWCI integration and testing is a developer internal
V&V activity. To gain insight into this process software quality assurance,
Metrics Report(s) | Acceptable degrees of: re- IV&V, and V&V personnel generally perform evaluations on-site
quirements traceability and and report to the remainder of the software T&E community. SDFs
stability, computer resource are reviewed to verify—

utilization, design stability,
breadth and depth of test-
ing, fault profiles

(1) Software and hardware is integrated in accordance with the
CSCI/HWCI integration and test approach and procedures identified
in the SDP.

(2) Results and analysis of CSCI/HWCI integration and testing
are recorded in the SDFs.

Section V (3) The developer revises software products, including CSCI/

Integration and Testing of Computer Software HWCI integration test cases, procedures and data, based on test

Configuration Items and Hardware Configuration ltems results. The developer also ensures that these revisions continue to
address requirements.

6-25. General b. The developer performs static analysis, data flow analysis and

a. The developer successively integrates two or more software orcode walk-throughs to assess software modularity, quality, and
hardware configuration items and tests the composite groupings tOmaintainability.
ensure they work together as intended. This process continues until ¢ Completed and published system documentation and training
all configuration items in a system or subsystem have been inte-packages are not normally available for CSCI/HWCI integration
grated and tested. CSCI/HWCI integration and testing also appliestesting. However, if such documentation is available, it should also
to building a system from subsystems. be reviewed.

b. If a multiple build software or system acquisition strategy is i d. Implementation and analysis of applicable metrics.
effect, this activity may not be complete until the final build. CSCI/

30 DA PAM 73-7 « 25 July 1997



6—30. Metrics

a. The metrics marked with an x in table 6-7 apply to CSCI/

HWCI integration and testing.

6-34. Entry criteria

a. The system should have successfully completed CSCI/HWCI
integration and testing, including developer internal CSCI/HWCI
testing.

Table 6-7

Metrics applicable to CSCI/HWCI integration and testing

b. Test preparation effort, including STD preparation and dry run,
should occur prior to running a formal test witnessed by the

acquirer.
Applies Metric
6-35. Test activities
X Cost a. The developer establishes test preparations, test cases, test
X Schedule rocedures, and test data for system qualification testing and records
X Computer resource utilization ph inf " in th g S
Software engineering environment the ‘information in t e.appmp”ate TD.
X Requirements traceability b. Bgnchmark test _flles are used as test data.
X Requirements stability c. Prior to an acquirer witnessed test, the developer should per-
X Design stability form a dry run of the test in accordance with the test cases, proce-
Complexity dures and data in the STD. The results are recorded in the
X Breadth of testing appropriate SDFs and test cases or procedures are updated if
Depth of testing needed.
x Fault profiles d. System qualification testing is conducted by the developer in

Reliability

accordance with the test cases, procedures, and data in the STD.

b. Breadth of testing becomes more refined in this activity.

e. All discrepancies, malfunctions and errors will be documented
in problem/change reports in accordance with paragraph, 2l

c. The design progress component of the design stability metric €ntered into the developer's corrective action system.

should indicate many more units incorporated toward the final sys-
tem or build configuration and that the design is becoming more

stable.

6-31. Decision criteria

f. Results of system qualification testing are recorded in an STR.

g. Test results are analyzed, software revised and retested at all
necessary levels, and the SDFs and other software products are
updated based on the results. The acquirer should be notified in
advance when qualification retesting is to occur.

Representative products, documents and decision criteria typically h. The operating environment for system qualification testing
addressed during CSCI/HWCI integration and testing are shown inusually consists of target or production representative hardware.

table 6-8.

This may be supplemented or substituted with local test bed hard-
ware only with the acquirer's approval.

Table 6-8

CSCI/HWCI integration and testing decision criteria

6—36. Evaluation activities
a. Continuous evaluation activities include—

Primary responsibility | Principal products

affected

(1) Review of the STD to ensure system qualification test prepa-
rations, test cases, and test procedures are adequate to verify compli-
ance with SSS and applicable IRS requirements.

Decision criteria

S/W Developer SDFs

Adequate evidence of

! ¢ (2) Assessment of test drivers for their ability to induce data and
CSCI/HWCI integration and

processing loads stated in the OMS/MP.

testing (3) Ensuring traceability from each STD test case to the system
S/W Developer Requirements Updated and interface requirements it addresses and conversely from each
and Gov't. SQA or | Trace(s) system and applicable interface requirement to the test case(s) that
v&v _ address it.
Metrics Report(s) | Updated b. Implementation and analysis of applicable metrics.
Acceptable degrees of: re- ~ . If needed to resolve open issues or address areas of risk identi-
h DL fied in the evaluation process, a formal test readiness review is
quirements traceability and .
stability, computer resource appropriate.
utilization, design stability, .
breadth of testi?\g, fault gro- 6-37. Metrics . . .
files a. The metrics marked with an x in table 6-9 apply to system
qualification testing.
Section VI Table 6-9
System Qualification Testing Metrics applicable to system qualification testing
Applies Metric
6-32. General
a. During this activity, the developer prepares for and demon- X (S;((:)iftt-:‘dule

strates the test cases necessary to authenticate compliance with aﬁxl

applicable system requirements.

b. If a multiple build software or system acquisition strategy is in
effect, this activity is not complete until the final build. X

c. Historical equivalent activities are: System Integration Test X
(SIT)—MSCR; SDT cycle/system testing (partial)—AIS.

6-33. Objective

The objective of system qualification testing is to demonstrate to theX
acquirer the system’s ability to meet its requirements as specified in

Computer resource utilization
Software engineering environment
Requirements traceability
Requirements stability

Design stability

Complexity

X Breadth of testing

Depth of testing

Fault profiles

Reliability

its system and interface requirements specifications.

b. Breadth of testing becomes more refined in this activity.

DA PAM 73-7 « 25 July 1997 31



c. The design progress component of the design stability metriccomprehensive aspects of DT that supports a certification of readi-
should indicate more units are being incorporated and that the deness decision for dedicated operational test and evaluation. The AIS
sign is becoming more stable over time.

d. Actual measurements for system reliability may become avail- developer test since it is not managed and performed by Govern-
able during this activity.

6-38. Decision criteria
Representative products, documents, and decision criteria typicallys_40. Objective

addressed during system qualification testing are shown in tabIeT
6-10. Items marked “ final” should contain comprehensive material
that corresponds to the current build and level of qualificati

testing.

Table 6-10
System qualification

testing decision criteria

Primary responsibility

Principal products
affected

Decision criteria

PM & Developer

Test readiness

Ready to perform system

with SQA and review(s), if qualification test
V&V required, to
resolve open
issues
S/W Developer STD Draft
Dry run of system qual. test
in accordance with STD
STD Final
STR Final
S/W Developer Requirements Updated

and Gov't. SQA or
V&V

Trace(s)

Metrics Report(s)

Acceptable degrees of: re-

quirements traceability and

stability, CRU utilization, de-
sign stability, breadth of tes-
ting, fault profiles

Section VIl

System Developmental Testing (DT)

6—-39. General

SQT is a system DT. In this pamphlet, an AIS SDT is considered a

ment testers. Refer to sections IV, V, and VI of this chapter in
regard to the SDT.

he objective of DT is to demonstrate that the system is capable of
meeting all its critical technical parameters as specified in Part | of

e TEMP, to identify technological and design risks, and to deter-

mine readiness to proceed to system operational testing (if applica-
ble). DT focuses on system requirements in order to verify system
technical performance and the ability of the system to perform in

the user environment. Critical to the success of this and future tests
is the ability to drive or load the system software in accordance with

the user's OMS/MP.

6-41. Entry criteria
The following must have occurred prior to beginning a formal
developmental test—

a. Evidence of successful completion of the developer’'s software
and system qualification tests.

b. An approved TEMP exists that has been updated to reflect the
developmental test.

c. The software baseline for test has been identified with name
and version identifiers and has been QA certified.

d. A safety assessment report (SAR) has been provided to the test
organization. When developmental testing involves troops, a safety
release must have been issued to the test organization by the appro-
priate release authority (see AR 73-1, AR 385-16 and DA Pam
73-4).

e. A DTRR has been held and the developmental test readiness
statement indicates the testing may proceed.

f. Problems detected during previous testing which will have im-
pact on a successful developmental test have been closed, or ap-
proval to waive or defer tests for those conditions has been received
from the TEMP approval authority after coordination through the
test IPT.

g. System documentation regarding software operation is in near
final form. This includes computer operation and users manuals,
conversion documentation, and training materials.

a. The DT described here consists of a series of system level
tests where the Government controls the T&E process. This sectiorg—42. Test activities

describes software T&E considerations for systems containing rqr evaluated systems, a system evaluation plan (SEP) and

software.

event design plan (EDP) are prepared by the independent evaluator/

b. The type and scope of a developmental test depends on thgagier.

life-cycle phase in which it occurs, the test objectives or the mile-
stone decision it supports. The procedures in this section should bia_i
tailored accordingly. Additional information regarding participants,
responsibilities, activities, applicable documents and reviews in DT
can be found in AR 73-1 and DA Pam 73-4. This section augment:
some software-specific aspects of, but does not replace, DA Pal

73-4.

c. If a multiple build software or system acquisition strategy is in
effect, this activity is not complete until the software’s or system’s

final build.

b. The developmental tester prepares a DTP to execute the EDP.
gure 6-1 summarizes an approach for addressing software require-
ments in the context of DT. Figure 6-2 provides additional detail for

Jest case development and subsequent evaluation. The DTP should
nfddress means of collecting and reporting data for system and soft-

ware reliability, depth and breadth of testing, and fault profiles
metrics.

c. The developmental tester coordinates all activities with the PM
and provides guidance on the resources required to support testing.

d. Specific developmental tests for materiel systems are identified d. The PM convenes a DTRR, prepares a DTRS, and submits it
in AR 73-1. The level of detail outlined in this section covers the to the developmental tester. Figure 6-3 is a checklist of software

32

related questions discussed at the DTRR.

DA PAM 73-7 « 25 July 1997



Tailor the generic test areas below to the specific software application based on its system level
requirements. The following approach addresses software requirements in the context of DT.

a.  Trace critical system requirements to the software requirements.
b.  Identify the input conditions possible for each software requirement to develop a test
coverage matrix. The test coverage matrix has cells which represent input conditions and the

tests addressing them.

¢.  Design and execute tests to address the most important test conditions. It will generally not
be possible to provide coverage for all input conditions, so testing should focus on the more
critical or more likely test conditions with respect to the expected deployment environment.
Sample generic test areas, or issues, are:

Issue
Performance

Interoperability
Usability

Maintainability
Safety

Security

Definition

How well the software supports system performance

The degree to which data is correctly exchanged and interpreted
between systems

The effort required to learn the user interface with the software, to
prepare input and to interpret output of the software

The effort required to modify the software

How well the software inhibits the system from engaging in
unsafe action toward personnel, equipment or materiel

How well the software safeguards classified information and
handles unauthorized attempts at system/data access

Figure 6-1. Software/system generic DT issues

DA PAM 73-7 « 25 July 1997

33



Issue

Evaluation Criteria

Performance

System response time

System accuracy

Recovery/restart procedures

Conversion processes
Robustness

Repeatability

Interoperability

Usability

Transmission verification
Transmission prioritization

Stress

Understandability

Interface considerations

System response to user
interaction

Output product quality

Training

Maintainability

Safety

Security

Documentation quality

Code quality

Computer resources

Robustness

Vulnerability

Accessibility

Accountability

Conformance to specified time tolerances

Correctness of system level decisions and the proximity of computations to
expected results

Users can overcome potential processing malfunctions

Data handling procedures for LOB and ROB processing are described and
executed in a correct manner

Legal or illegal operator entries or procedures do not cause system degradation
except as allowed AW requirements

Consistent conditions or events produce consistent results

Acceptance of legal transmissions and rejection of illegal transmissions
Transmissions sent or received are prioritized and handled in the proper order

Data and transaction volumes, loads, varying conditions. or peak processing do
not degrade the system except as allowed IAW requirements

How well the user is able to manage the system including interactive terminal
interface, cycle/system set-up, and input/output control

Ease of data handling through cycle processing, intersystemn data transfer,
transmission of data over communications links, and time sharing links are
functioning properly

Acceptance of legal entries and rejection of illegal entries

Terminal displays, hard copy reports, magnetic tape and direct access files, etc.
are correct and disposition and handling instructions for these products are clear
and adequate

Adequacy of appropriate training manuals, classroom and/or on-the-job
instruction, and problem reporting procedures

Adequate degree of completeness, correctness, consistency and understandability
of S/W documentation to maintain code

Code quality is measured by programming style (e.g., complexity, modularity,
commenting), reserve memory capacity and S/W metrics

Memory, processor, storage and network capacity is adequate to allow for
anticipated growth

Legal or iliegal operator entries or procedures, or loss of software capability do
not cause system to exhibit hazardous conditions to personnel or materiel

Degraded operating modes or recovery sequences do not cause undue safety
problems for personnel except as allowed IAW requirements

Legal or illegal operator entries or procedures do not allow unauthorized use,
manipulation or compromise of system or its data

Attempts at unauthorized use or manipulation are detected and reported IAW
requirements

Figure 6-2. Sample software issues and evaluation criteria

DA PAM 73-7 « 25 July 1997



General.

a. Has government reviewed/approved all software test plans/procedures/previous test results?

b.  Are all functional requirements clearly identified?

c.  Is there confidence that software functions will execute properly (walk-throughs, use of standards for
requirements and design specifications, resource allocation, use of applicable standards from the
approved Army technical architecture (ATA))?

d. Is there a clear understanding of what software functions will be tested by the developmental and
operational testers?

e. [sthe computer resources life cycle management plan current?

. Have plans been formulated to deliver all software documentation prior to DT/OT?

Safety. Does the system or software have any safety limitations (operational limitations
for test personnel) either inside or outside the required performance envelope? If so, what corrective
action has been taken or is any planned? Has a safety release been approved?

Reliability, Availability, Maintainability. Have software relevant failure definition/scoring criteria
been established? Has software been identified as a potential source of failure?

Configuration Management.
a.  Has a technical documentation package been established for the preliminary product baseline?
b.  How is the software configuration being controlled?
(1) Has a configuration management plan been approved which includes provisions for government
approval of engineering change proposals-software and waivers/ deviations?
(2) Has a configuration control board been established?
(3) Are changes under configuration control?

Testing. Compare the requirements document against test results to date. There must be

reasonable assurance that the system can satisfactorily pass technical tests or equivalent independent

government tests.

a. Do test results show that system and software requirements will be met? (Show quantity tested, what
tests were conducted, relevant metrics and results).

b.  Have the tests addressed all system and software requirements?

¢.  What problems have occurred and how have they been resolved?

d.  Have critical/major test incident reports from developmental and operational testing been closed out?
(List and summarize corrective action.)

Integrated Logistics Support.
a. Supportability.

(1) Has the PDSS agent been identified?

(2) Has the software maintainability evaluation been conducted?
b. Training. What version of software was used for training?

Security. Is certification testing of system security planned?

Test Resources. Are any unique facilities, equipment or software instrumentation required
and will they be available at the test site(s)?

Figure 6-3. DTRR software T&E checklist

DA PAM 73-7 « 25 July 1997

35



e. Test data consists of live data files (when they exist) supple- b. Data from any of the metrics may be used to assist in deter-
mented with user prepared data. Test data should be representativaining readiness for developmental test.
of typical and peak load operational conditions. When required, c. Breadth and depth of testing, reliability, and fault profiles
additional files to test high risk performance parameters should becollected during the developmental test are of particular interest.
included. d. The traceability and stability metrics, complexity and CRU
f. DT is conducted by the developmental tester. An ad hoc groupcontribute towards the maintainability evaluation.
of system users or operators may also participate based on test e. An examination of fault profiles for the period prior to DT
design. shows the ability of the developer to identify and correct software
g. DT is performed on target hardware. problems. This examination also provides an indication of software
h. Problems discovered during DT are recorded as system/soft-maintainability. _ S )
ware anomalies using the TIR. The report has a developer’s analysis f- The SEE metric may also provide insight regarding the
section used for corrective action reporting. All software problems developer’s ability to maintain the software.
including problems with test procedures will be recorded in accord-

ance with paragraph 2-2 6-45. Decision criteria

epresentative products, documents, and decision criteria typically

I. The tester prepares a developmental_test report describing t.h ddressed during system developmental testing are shown in table
results of test execution and data collection efforts. The report is;~

submitted to the PM, independent evaluators and appropriate review
body (ASARC, in-process review (IPR) or MAISRC).
j- The independent evaluator prepares a system evaluation reporfable 6-12
(SER) or system assessment (SA) and submits it to the PM andSystem developmental testing decision criteria

appropriate review bOdy' Primary responsibility | Principal products Decision criteria

k. Following the test, results are analyzed, software revised if affected
necessary and retested, and the SDFs and other software products
updated based on the test results. PM DTRR, DTRS Ready to perform DT

|. During the DT, the QA certified software baseline should not PM and Gov't. Executable S/W S/W baseline for DT
be modified for use in the DT without prior approval of the PM and SCM
independent evaluators. Developmental Test Report Final

. . Tester

6-43. Evaluation activities

a. Results of testing are prioritized and categorized by a Govern-Evaluator SA Final
ment data authentication group. Principal members are the PM, use[ csec/ppss Maintainability Draft
representative, evaluator, and developmental tester. agent evaluation

b. Test results are evaluated by the evaluator in accordance with )

Gov't. SQA or Requirements Updated

the SEP. V&V Trace(s)

c. Evaluation is a comprehensive V&V process conducted to
ensure that all capabilities and requirements of the system are exer- Metrics Report(s) | Acceptable degrees of: re-
cised and analyzed in accordance with the issues and criteria stated quirements traceability and
in the SEP and TEMP. Elements of the evaluation may include but stability, computer resource
are not limited to the six generic test issues of figure 6-1: software utilization, design stability,
performance, interoperability, usability, maintainability, safety, and breadth and depth of test-
security. Sample subissues and evaluation criteria for each issue arg ing, fault profiles, reliability

shown in figure 6-2.
d. The evaluation should include discussion of relevant software
metrics and any outstanding software problems. For example, soft6—46. Other considerations
ware faults discovered and closed, test adequacy, and failure pat- @ Preferably, there should be no open priority 1 or 2 problem/

terns over the DT period should be addressed. change reports or TIRs from previous testing prior to initiating DT.
Severe test limitations may result if testing occurs with open prob-
6—44. Metrics lem reports. It may cause great portions of DT to be repeated due to
a. The metrics marked with an x in table 6-11 apply to system invalid data.
developmental testing. b. Ideally, the software baseline used in training for the formal

test should not be changed prior to the start of test. This reduces the
risk of changes to RAM instrumentation, changes to data collection

Depth of testing
Fault profiles
Reliability

software.

f. It is very important to test interoperability (both intrasystem
and intersystem) using actual target systems. The Army Inter-
operability Network (AIN) and the Digital Integration Laboratory

Table 6-11 and reduction procedures, or that test participant retraining is neces-

Metrics applicable to system developmental testing sary shortly before starting formal test.

Applies Metric c. The software baseline is not modified during DT unless severe
problems are encountered, in order to maintain consistency of data

X Cost collected throughout the test.

X Schedule L .

X Computer resource utilization d. If the number of priority 1, 2, or 3 problems detected during

X Software engineering environment DT become excessive, impacting the test objectives, the develop-

X Requirements traceability mental tester can suspend or terminate testing in accordance with

X Requirements stability the policy stated in AR 73-1.

X Design stability e. If the software baseline is modified during the test period,

X Complexity regression testing is required to ensure detected problems were cor-

X Breadth of testing rected and additional problems were not introduced into the

X

X

36 DA PAM 73-7 « 25 July 1997



(DIL) at Fort Monmouth, New Jersey, and Joint Integrated Test from the operational tester, operational evaluator, and TEMP ap-
Center (JITC) at Fort Huachuca, Arizona, are available for this proval authority after coordination through the test IPT.

purpose. h. System documentation regarding software operation is in final
g. Post-deployment software support (PDSS) personnel shouldform, This includes computer operation and users manuals, conver-

conduct the software maintainability evaluation. sion documentation, and training materials.

Section VIII

6-50. Test activities

a. For evaluated systems, a SEP is prepared jointly by the opera-
6—47. General tional tester and evaluator.

a. Operational tests are system Ie\_/el tests \_Nhere the Government b, The operational tester prepares an outline test plan (OTP)
controls the T&E process. This section describes software test anddentifying all resources necessary to carry out the test.
evaluation considerations for systems containing software. OT dif- c. The operational tester prepares a DTP to execute the SEP

fer(sl)frlc;rrlol?l'g Icr:etnlhitn ZTsIems in an operational environment that isFigure 6—4 summarizes an approach for addressing software require-
as realistic a: practicaly P ments in the context of OT. Figure 6-2 provides additional detail for

(2) Employs personnel with the same skills and training as thosetESt case development and subsequent evaluation. The DTP should

who will operate, maintain and support the system when it is de- addtress p(rjowdfltng TIRsl_tg_l_tthe bPM dttct)w C?Ileci. and rzpfortltdataf_lfor
ployed, such as typical troops or user organizations. system and soitware refiability, breadth of testing, and tauit profiies

b. The type and scope of an operational test depends on the life Metrics:

cycle phase in which it occurs, the test objectives or the milestone d. The operational tester conducts an OTRR to identify any prob-
decision it supports. The procedures in this section should be taidlems that may impact starting or adequately executing the opera-
lored accordingly. Additional information regarding participants, re- tional test. The items outlined in figure 6-5 are appropriate OTRR
sponsibilities, activities, applicable documents and reviews in OT discussion points regarding requirements software must meet to per-
can be found in AR 73-1 and DA Pam 73-5. This section augmentsmit certification of readiness for dedicated operational testing.
some software-specific aspects of, but does not replace, DA Pam e A production database or equivalent is used as test data.
73-5. . . _ . f. OT is conducted by the independent operational tester.
c. If a multiple build software or system acquisition strategy is in . . i
effect, this activity is not complete until the software’s or system’s 9. O_T IS performed_on ta_lrget he_lrd_vvare in the p_rc_)ductlon repre-
final build. sentative system configuration. This includes requisite communica-
d. This chapter outlines the comprehensive aspects of an joT tions facilities, peripherals, and interfaces to other systems.
When an accelerated software development acquisition strategy is h. Problems discovered during OT are recorded as system/soft-
used, the full level of detail described in this section applies to theware anomalies using TIRs. All software problems, including prob-
IOT of the representative sample for fielding certification, IOT.C. lems with test procedures, will be recorded in accordance with
Not all aspects of this section apply equally to the incremental paragraph 2-2.
software block I0Ts that precede or follow the I0T.C, as they are j The operational tester and evaluator prepare a system evalua-
dependent on the functionality of each block. See DA Pam 73-5 fortion report (SER) assessing the results of the operational test. The
detail. independent evaluator evaluates the system’s effectiveness, suitabili-
6-48. Objective ty, and survivability with respect to the critical operational issues

The objective of this activity is to demonstrate that the system is and_ c_:riteria._The report is submitted to the appropriate milestone
capable of meeting its operational issues and criteria as specified ifff€Cision review body.
Part IV of the TEMP. OT focuses on how the system supports the J. Test results are analyzed, software revised if necessary and
user's mission, and the capability of the user to employ the systemfetested, and the SDFs and other software products updated based
often termed the system’s operational effectiveness and suitability.on the results.
o k. Changes to the QA certified software or firmware baseline

6-49. Entry criteria . o must not be implemented during the OT unless specifically ac-
The f(_)llowmg must have occurred prior to beginning a formal knowledged and concurrence received from the responsible opera-
operzglo_gal teSt'f ful leti f tional test and evaluation agency. The software baseline is not

a. Evidence of successiul completion o DT. modified during OT unless severe problems are encountered, in

b. An approved TEMP exists that has been updated to reflect the L2 -

order to maintain consistency of data collected throughout the test.

operational test. . .
c. The software baseline for test has been identified with nameThe cpmmander of OPTEC, or MEDCOM in t.he case of medical
materiel, must approve changes to the baseline.

and version identifiers and has been QA certified.
d. A safety release has been issued to the test organization by the

System Operational Testing

appropriate release authority. 6-51. Evaluation activities
e. An OT pilot test has occurred and any deficiencies found in a. The data from OT are reviewed and authenticated by a Gov-
the DTP have been corrected. ernment data authentication group. Principal members are the PM,

f. One or more operational test readiness reviews (OTRRs) hasuser representative, independent evaluator, and operational tester.
been held and operational test readiness statements (OTRSSs) in eachp, Test results are evaluated by the independent evaluator in
review member's area of responsibility indicate the testing may accordance with the SEP. If the system is found to be operationally

proceed. ) ) ] ) ) effective and suitable, the T&E findings support a production deci-
g. Problems detected during previous testing which will have gjon or software fielding.

impact on a successful operational test have been closed, or ap-

proval to waive or defer tests for those conditions has been receiveqJ c. A completed software maintainability evaluation should be

sed as part of the system’s suitability determination.

DA PAM 73-7 « 25 July 1997 37



Tailor the generic test areas below to the specific software application based on system level
requirements. The following approach addresses software requirements in the context of OT.

a.  Trace critical operational issues to critical system requirements. Use the trace of critical
system requirements to software requirements that was done during developmental test
preparation to link the issues to software. Add any links from operational issues to software
not covered by the critical system requirements.

b.  Use the test coverage matrix and test results from DT to determine whether any cells in the
matrix were not tested or incompletely tested to date. Add new cells to the DT coverage
matrix for any new links to form an OT coverage matrix. Identify input conditions for each
software requirement deemed critical.

c.  Ensure that operational test designs address the most important test conditions. It will
generally not be possible to provide coverage for all input conditions, so testing should focus
on the more critical or more likely test conditions with respect to the expected deployment
environment. Sample generic test areas, or issues, are:

Issue Definition

Performance How well the software supports system performance

Interoperability The degree to which data is correctly exchanged and interpreted
between systems

Usability The effort required to learn the user interface with the software, to
prepare input and to interpret output of the software

Maintainability The effort required to modify the software

Safety How well the software inhibits the system from engaging in

unsafe action toward personnel, equipment or materiel

Security How well the software safeguards classified information and
handles unauthorized attempts at system/data access

Figure 6-4. Software/system generic OT issues

DA PAM 73-7 « 25 July 1997




T&E History.

a.

b.

Does the system possess any known priority 1 or 2 problems that impact the OT so as to
constitute a deficiency relative to a critical operational issue?

Have all priority 3 problems been documented, complete with appropriate impact analyses
relative to each problem's potential impact to the system's mission capability and ability to
resolve the affected critical operational issues?

Has the system functionality to be operationally tested and evaluated been made available
prior to the start of OT?

Has the system functionality to be operationally tested and evaluated been developmentally
tested?

Have features required to support system level requirements and the system interfaces
required to interoperate with external systems been certified to be functional?

Were the system features of item (e) certified in an operationally realistic environment
against operational requirements?

Are software requirements and design stable?

Has sufficient depth and breadth of software and interface testing been performed?

>

Safety. Does the system or software have any safety limitations (operational limitations

for test personnel) either inside or outside the required performance envelope? If so, what
corrective action has been taken or planned? Has a security release been issued?

Reliability, Availability, Maintainability. Have failure definition/scoring criteria

been established? Has software been identified as a potential source of failure?

Configuration Management.

a.

b.

Is a deficiency identification, tracking and reporting system in place to support the
monitoring of deficiency reports by the operational test agency?

Has a software configuration management system with associated control procedures been
put in place prior to the start of OT?

Has the version of software to be used in the operational test been baselined?

Will the operational test agency have complete access to the configuration management
system during the operational test period?

Will pending software or firmware changes, if any, be completed prior to the start of OT?
Is a physical configuration audit of the software version to be fielded planned?

Integrated Logistics Support.

a.

Supportability.

(1) Has the software maintainability evaluation been completed?

(2) Was the maintainability evaluation performed by the PDSS agent?

(3) Is the computer resources life cycle management plan current?

Training. Will the materials used to train testers reflect the proposed operational test
software baseline? If not, are workarounds in training needed? Have workarounds been
approved?

Security. Has system security certification occurred? When is security accreditation

planned?

Test Resources. Are any unique facilities, equipment or software instrumentation

required and will they be available at the test site(s)?

Figure 6-5. OTRR software T&E checklist

DA PAM 73-7 « 25 July 1997

39



d. Operational evaluation verifies and validates that typical user d. A supplemental site test (SST) may be necessary for informa-
missions can be met by the system under test when operated in thon systems that execute in multiple hardware and operating system
deployed environment using typical personnel. System and softwareenvironments if there are differences between user locations that
functions are exercised and analyzed in accordance with the COICcould affect performance or suitability. The SST supplements an
stated in the operational SEP and TEMP. Elements of the operaiOT or UAT. The SST and UAT will not be used in lieu of an IOT
tional evaluation regarding software may include but are not limited to meet the requirements of DODD 5000.1 and AR 73-1.
to the six generic test issues of figure 6—4: software performance,
interoperability, usability, maintainability, safety, and security.

e. The evaluation should include discussion of relevant software Table 6-14 o
metrics and any other outstanding software problems. For exampleQPerational testing decision criteria
software faults discovered, test adequacy, and reliability over thePrimary responsibility | Principal products Decision criteria
OT period should be addressed. affected

f. If the operational test is supporting a decision to release thepp and Govt. Executable S/W S/W baseline for OT
software to users, the software fielding activity and its decision scm
criteria should be used in the evaluation. See chapter 7 for the

description of the software fielding activity. Operational Tester | OTRR, OTRS Readiness to conduct OT
. Operational Tester, | SA Final
6-52. Metrics Independent

a. The metrics marked with an x in table 6-13 apply to system Evaluator
operational testing:

LCSEC/PDSS Maintainability Final

agent evaluation
Table 6-13 _ ) Gov't. SQA or Requirements Updated
Metrics applicable to operational testing V&V Trace(s)
Applies Metric

Metrics Report(s) | Acceptable degrees of: re-

X Cost quirements traceability and
X Schedule stability; CRU utilization; de-
X Computer resource utilization sign stability; breadth and
X Software engineering environment depth of testing; fault pro-
X Requirements traceability files, reliability
X Requirements stability
X Design stability
X Complexity e. There should be no open priority 1 or 2 problem/change
X Breadth of testing reports or TIRs from previous testing prior to initiating OT. Severe
X Depth of testing test limitations may result if testing occurs with open problem
X Fault profiles .
" Reliability reports. It may cause great portions of the OT to be repeated due to

invalid data.
] o f. Ideally, the software baseline used in training for the formal
b. Data from any of the metrics may be used to assist in deter-test should not be changed prior to the start of test. This reduces the

mining readiness for operational test. _ risk of changes to RAM instrumentation, changes to data collection
~ c. Breadth of testing, reliability, and fault profiles collected dur- and reduction procedures, or that test participant retraining is neces-
ing the operational test are of particular interest. sary shortly before starting formal test.

g. The software baseline is not modified during OT unless severe
roblems are encountered, in order to maintain consistency of data
act())aeected throughout the test.
. If the software baseline is modified during the test period,
regression testing is required to ensure detected problems were cor-
6-54. Other considerations rected and additional problems were not introduced into the

a. In an accelerated development/fielding acquisition strategy, a Software.
limited user test is often conducted to prove out the operational test i. If the number of priority 1, 2, or 3 problems detected during
bed. This test bed is comprised of the target hardware and NDIOT become excessive, impacting the test objectives, the operational
software, such as commercial operating systems, database managtester can suspend or terminate testing in accordance with the policy
ment systems, etc., that form the basis of the operational systemstated in AR 73-1.
Application software is not usually tested at this time. As each
application software block is developed, it undergoes an initial oper-
ational test on the test bed.

b. Integrated developmental and operational testing is encouraged-hapter 7 o
if the independence of evaluations is retained and the integrity ofActivities Related to Fielding
results is not compromised. Integrated DT/OT is conducted simul-
taneously using the same hardware and software, occasionally wittSection |
dedicated phases of DT and OT. General

c. If OT is required to support PDSS, then a FOT is conducted
by the operational tester. Otherwise, a user acceptance test is con~~1. Purpose
ducted by the FP or CBTDEV. For systems that have both a FP andrhis chapter summarizes activities related to fielding software-inten-
a CBTDEV, the UAT is conducted by the FP. A UAT is limited in sive systems and transferring maintenance responsibility from the
scope relative to an FOT with the primary purpose of verifying the developer to a life cycle support agent. Opportunities and proce-
functionality of changes to an information system in the useéures to enhance the process through CE are identified.
environment.

6-53. Decision criteria

Representative products, documents, and decision criteria typicall
addressed during system operational testing are shown in t
6-14.

40 DA PAM 73-7 « 25 July 1997



7-2. Scope distribution. The products developed here are tested in other activi-
a. The sections in this chapter parallel the activities of the con- ties. Some check out is done during site installation.

solidated software standards in paragraph #-But have been

expanded to include considerations beyond those of the developer/—8. Evaluation activities o _

The events described here span preparing the executable softwardSers and LCSEC/PDSS personnel should be heavily involved in

and operating instructions for distribution through transferring the continuous evaluation during this activity to—

software product baseline to a maintenance agent for PDSS. The & Review the SIP to verify— ) o

activities “ preparing for software use” and “ preparing for software _(1) Installatlon task descriptions identify the organization that

transition” have been renamed “ software fielding” and “ software Will accomplish the task, such as user, developer, computer opera-

transition” to indicate their expanded scope. tions, PDSS personnel; the quantity of personnel, required skill
b. The applicability of an activity to any given program and the '€Ve€lS, and installation schedule.

depth to which it is carried out is dependent on overall system  (2) Provisions for scheduling personnel that will comprise the
factors such as acquisition strategy and level of technical risk. installation team, students for training, computer support and techni-

c. It is unlikely that many systems need all the manuals identified cal assistance; and arrangements needed for facilities, lodging, and

in this section. Substitution of commercial or other off-the-shelf transpgrtatlog, if requweg. d | ;
documentation that adequately meets the intent of these manuals is (3) rocedures are adequate and complete for—
) Gy e o el sof

d. As specified by the acquirer, this section also applies to train- gc)) Initﬁaclizliln% galjltabrfsel230";1 (Sthefosovatevl\:;e with site-specific data
ing devices, automatic test equipment or other logistics support tools (d) Converting data from the current system ’
needed for the system. Installation and operating instructions as well (e) Performing a dry run of the procedures in. operator and user
as software maintenance information for these devices must also be,

: anuals.
passed to the life-cycle agent. .- . ) b. Review the software version description (SVD) to verify that
e. In embedded MSCR or logistics support equipment, informa-

. . : X . : the exact version of software prepared for each user site is identi-
tion about installing and operating software is often incorporated faq The SVD should provide—

into techn.icall and fi.elld maintenance manuals. In that case,.the (1) An inventory of materials comprising the version (tapes,
software fielding activity includes developing or participating in gisks, documentation, listings, etc.) along with applicable handling
documenting the appropriate sections of those manuals and assocknq security instructions or duplication and license restrictions.
ated training materials. o ~ (2) Explicit identification of all computer files making up the

f. Elements of the DT, OT, software fielding, and software transi- yersjon.
tion activities contribute to the materiel release decision. (3) A list of all changes incorporated into the version since the

L previous version.
7-3. Objective

e I e . (4) Identification of any site unique data.
The objective of activities related to fielding is to prepare and put in (5) Installation instructions and procedures for determining

place the system’s software logistics support environment. This in-\uhether the version has been installed properly.
cludes replicating and disseminating software and operating instruc- (6) Information on possible problems and known errors in the

tions to users, training users and maintenance personnel, giidion. Instructions for recognizing, correcting or avoiding these
establishing the environment necessary to repair and upgrade thgoplems should be included.

software. c. Review technical, maintenance or other operations manuals
. providing instructions for users who—

Section Il (1) Both operate and make use of the software’s results, as in a

Software Fielding software user manual (SUM).

(2) Prepare inputs to and receive outputs from the software but
he devel h d di d in thi ._depend on others to operate the software in a computer center or
a. The developer prepares the products discussed in this sectionyer centralized or networked software installation, as in a software

unless otherw_lse spt_acmed by the acquirer. o inputioutput manual (SIOM).

b. If a multiple build software acquisition strategy is in effect, '(3) Operate the software in a computer center or other centralized
planning should identify what software, if any, is to be fielded 0 o networked software installation so that it can be used by others,
users for each build. Software fielding for a build means those g5 in a software center operator manual (SCOM).
actions necessary to carry out the fielding plans for that build. (4) Operate the computers on which the software will run, as in a

— computer operation manual (COM).
7-5. Objective P P ( )

h biect f soft fielding i ke th bl f d. Assess the manuals to determine their usability, correctness,
The objective of software fielding is to make the executable soft- 54 completeness in imparting the procedures necessary to—
ware available to users and deliver the manuals and instruction

. (1) Set up the requisite hardware and software environment for
necessary to operate the software. Executable software includes anyge including communications equipment.

data files necessary to install an_d run the deployed software on (2) Operate and interpret results from diagnostic features.
target hardware, such as batch files and router tables. (3) Perform mission tasks or computer runs in different operating
modes, such as training, restart, emergency conditions, degraded
modes, communications failures, manual override, shutdown or typi-
cal conditions.

(4) Identify, document and report problems or malfunctions.

(5) Recover from, work around or avoid malfunctions.

7-4. General

7-6. Entry criteria

a. An approved software installation plan (SIP) or equivalent
should exist to guide the installation process.

b. The software to be issued should show evidence of successful
testing at all appropriate levels, must be accepted by the MATDEV/ (6) Ensure continuity of operations.

FP and user, and must have been certified by QA. e. Assure that suitable user training and support training is
c. If materiel release provisions apply to the system, a request forpanned.

release must be approved prior to actual field use. Paragraph 7-11, t Enpsure that installation occurs in accordance with the SIP.
AR 700-142 and DA Pam 700-142 provide more detail on these g. Implementation and analysis of applicable metrics.
requirements.

o 7-9. Metrics
7-7. Test activities The metrics marked with an x in table 7-1 apply to preparing for
Extensive testing is not inherent in preparing software packages forsoftware use. Accounting for the cost of performing this activity and

DA PAM 73-7 « 25 July 1997 41



tracking a schedule of events, such as site installations and medigable 7-2
preparation and distribution, are the only metrics associated withSoftware fielding decision criteria—Continued

this activity. Primary responsibility | Principal products Decision criteria
affected
Table 7-1 SPS (exec. SIW Draft
Metrics applicable to software fielding section)
Applies Metric SVD Final (if applicable)
X Cost
X Schedule SUM Final (if applicable)
Computer resource utilization
Software engineering environment SIOM Final (if applicable)
Requirements traceability
Requirements stability SCOM Final (if applicable)
Design stability
Complexity COM Final (if applicable)
Breadth of testing
Depth of testing Applicable informa-
Fault profiles tion for tech.,
Reliability maint. or training
manuals
S/W Developer Metrics Report(s) | Updates for cost and sched-
7-10. Decision criteria and PM ule
Representative products, documents and decision criteria that typitvATDEV, Materiel | Material Release | Approved by applicable de-
cally should be met during preparation for software use are shownRelease Review cision authority
in table 7-2. Items marked *“ final” should contain comprehensive Board (MRRB)

material that corresponds to the current build or release. Notes:

. . 1 As identified in the executable software section of the SPS.
7-11. Other considerations

a. The materiel release process assures that Army materiel is
suitable and supportable before the MATDEV may transfer account- )
ability and control of the materiel to users. Systems containing Section il B
software follow this process. Materiel release actions in support of Software Transition

new procurement, reprocurement, and system changes must also he

supported by assessments or evaluations conducted by the independ=12: General . . .
bp y y b a. The developer prepares the products discussed in this section,

ent developmental and operational evaluators. A software suppor- .
tability statement is included in the materiel release package. unless othervv_lse not_ed. _— .

b. The following subparagraphs address software changes that b. l.f a multlplg buﬂ_d software acquisition strategy is in e_f_fect,
fall under AR 70-142 materiel release provisions (whether embed-pl"’mnlng should identify what software, if any, is to be transitioned

ded. propitay or nondevelopment software). Adding, modifying 19,1 SUPPOT Sgency fr each bul Saftere vaniion fr & bl
or removing software is considered a change. y ry P

S that build.
(1) Software that may significantly change the system’s— at bul
(@) M@SS?OH fUﬂCtiO_r}- 7-13. Objective
(b) Mission capability. a. This activity’s objective is delivery of all end item executable
(c) Performance parameters. software, associated source files, computer program support manuals
(d) Interoperability requirements. and instruction necessary for the support agent to—
(e) Software architecture. (1) Operate the deployed executable software on its target
(f) Maintainability. hardware.
(g) Reliability. (2) Regenerate the executable software.
(h) Safety. b. Executable software includes any data files necessary to install

(2) A block update consisting of software changes of more than a_\nd run the deployed software_on target hardware, suc_h as batch
files and router tables. Source files, as used here, also include any

30 percent source lines of code (SLOC), or 30 percent cumulative_ =~ : : -
SLOC changes since the previous materiel release approval ancillary data files essential to re-creating executable software from
) source materials.

(3) A block update consisting of a software translation of 30
percent equivalent SLOC to a different computer programmingig Entry criteria

language. o . a. An approved STrP should exist to guide the developer’s transi-
(4) Software that is significantly changed to run on a different tjon process.
computer processor or different computer system configuration. b. An updated CRLCMP should exist to guide the support

(5) Software changes that require new test equipment for the useagent’s transition process. Elements of the STrP may be incorpo-
or impact 25 percent or more of the training program of instruction. rated into the CRLCMP by reference to reduce duplication.

c. Physical and functional configuration audits of software prod-
ucts to be delivered should occur prior to the completion of this

Table 7-2 o .
Software fielding decision criteria activity for each build.
Primary responsibility | Principal products Decision criteria 7-15. Test activities
affected Extensive testing of target software is not inherent in preparing
S/W Developer Executable S/W Final software materials for transition. However, the developer should

files 1 demonstrate to the acquirer that the deliverable software can be

42 DA PAM 73-7 « 25 July 1997



regenerated (for example, compiled, linked, loaded, into an ex- (9) Assure that a physical configuration audit occurs prior to
ecutable product) and maintained using the hardware, software, an@dcceptance of transitioning material identified in the SPS.
facilities identified in the STrP. Some check out is done as part of (10) |mplementation and analysis of applicable metrics.

the support site installation process.

7-16. Evaluation activities 7-17. Mgtrlcs ) ) ]
a. A software maintainability evaluation with subsequent suppor- The metrics marked with an x in table 7-3 apply to software transi-
tability statement is required for materiel release. This is preparedtion. In addition to cost and schedule reporting, an assessment of

by the LCSEC/PDSS agent. software maintenance capability may be appropriate for organic or
b. LCSEC/PDSS personnel should be heavily involved in contin- contracted support organizations whose comparable prior experience
uous evaluation during this activity to— is limited.

(1) Review the STrP to verify that all resources needed to con-
trol, copy, and distribute the software and its documentation, and to:
specify, design, implement, document, test, evaluate, control, copy,
and distribute modifications to the software are identified and de-

Table 7-3
Metrics applicable to software transition

scribed. Resource descriptions include— Applies Metric
(a_) _Facilities (buildings, rooms, power, safety, security Cost
provisions). X Schedule
(b) Hardware (models, versions, configurations, manuals, source Computer resource utilization
of supply, licensing provisions). X Software engineering environment
(c) Software (names, version numbers, release numbers, configu- Requirements traceability
rations, manuals, vendor support, data rights). Requirements stability

Design stability
Complexity
Breadth of testing

(2) Ensure the STrP provides a schedule for transition activities,
addresses training, and identifies number, type, skills levels, and

security clearances required for support personnel. Depth of testing
(3) Assure that the SSDD reflects the “ as built” system. Fault profiles
(4) Assure that the software product specification (SPS) is com- Reliability

plete and up to date.

(5) Review the SVD to verify that the exact version of software
prepared for the support site and each user site is identified. The
SVD should provide— 7-18. Decision criteria

(a) An inventory of materials comprising the version (tapeRepresentative products, documents, and decision criteria that typi-
disks, documentation, listings, etc.) along with applicable handling cally should be met during preparation for software transition are
and security instructions or duplication and license restrictions.  shown in table 7-4. Items marked “ final” should contain compre-

(b) Explicit identification of all computer files making up the hensive material that corresponds to the current build.
version.

(c) A list of all changes incorporated into the version since the

previous version. Table 7-4 - o

(d) Identification of any site unique data. Software transition decision criteria

(e) Installation instructions and procedures for determinirmimary responsibility | Principal products Decision criteria
whether the version has been installed properly. affected

(f) Information on possible problems and known errors in the g, Developer Executable S/W Final
version. Instructions for recognizing, correcting or avoiding these ang Gov't. SCM files
problems should be included.

(6) Review software maintenance manuals providing instructions Source files Final
for support personnel who—

(a) Program the computers on which the software was developed SPS Final
or on which it will run, as in a computer programming manual. SVD Final

(b) Program or reprogram firmware devices in which the soft-

ware will _be ins_talled, as in a firmware support manual. SSDD Final (* as built’ configura-
(7) As it applies to each support task, assess the manuals to tion
determine their usability, correctness and completeness in imparting
the procedures necessary to— CPM Final (if applicable)
(a) Set up the requisite hardware and software programming
environment. FSM Final (if applicable)
(b) Operate and interpret results from diagnostic features. S/W Developer Functional configu- | Final
(c) Describe the physical characteristics of the support equipmentand PM, Gov't. ration audit (FCA)
or target hardware, as applicable, that must be known to performSQA and Gov't. and physical con-
programming tasks. Examples are word lengths, interrupt capabili-SCM figuration audit
ties, hardware operating modes, memory attributes, timers, clocks, (PCA)
;ggtjl'j/rcggt'put characteristics, sequencing requirements, and special Metrics Report(s) | Updates for cost and sched-

ule; SEE if maint. capability

(d) Install, replace or repair firmware devices including contin- unproven

gencies to preserve continuity of operations when deployed.
(e) Ensure classification security is safeguarded.
(f) Identify, document, and report problems or malfunctions.
(g9) Recover from, work around or avoid malfunctions.
(8) Assure that suitable support personnel training is planned, if
applicable.

DA PAM 73-7 « 25 July 1997 43



Chapter 8 process change requests, track changes, distribute changes, an

Ancillary Activities maintain past versions must be documented in the developer's SDP
or CM plan. There may be several CCBs for a system such as the
8-1. Purpose software developer's CCB, the Government subsystem CCB and

This chapter briefly describes activities integral to software develop- Government system CCB. Distribution of changes may also include
ment and maintenance that support the activities in chapters 5-7recovery of previously issued items, as required.
The ancillary activities of this chapter provide many opportunities  e. Configuration status accounting is the recording and reporting

for obtaining CE information. of information to manage configuration items which are under con-
figuration control. This includes a record of the—
8-2. Scope (1) Approved configuration documentation and identification
a. Activities in this chapter parallel the activities of the consoli- markings.
dated software standards of paragraph #-dut have been ex- (2) Status of proposed changes, deviation and waivers to the

panded to include considerations beyond those of the developer. Thescl/HWCI (both engineering change proposals-software (ECP-Ss)
material covers major disciplines and events that facilitate otherand problem/change reports).
software activities to proceed effectively and efficiently. (3) The implementation status of approved changes.

b. The applicability of an activity to any given program and the  (4) Changes made to an item since being placed under configura-
depth to which it is carried out is dependent on overall systemtion control.
factors such as acquisition strategy and level of technical risk. f. Configuration audits are formal examinations of one or more

c. If a multiple build system or software acquisition strategy is in CSCIs/HWCls to verify that the item under configuration control
effect, the following activities should address the context and objec-achieves the requirements allocated to it and that the technical
tives appropriate for each build. documentation representing the item matches the physical imple-

d. Each of the following activities need not be completely dis- mentation of the item. These are functional and physical configura-
tinct from the others as long as appropriate independence criterigion audits (FCA, PCA), respectively. Functional configuration
among them are maintained. For example, the quality assurancewudits and PCAs are typically conducted prior to acquirer accept-
activity could perform all software product evaluations on a project. ance of the product or “ as-built” baseline.

e. Many of these activities are carried out at different levels by 9. DA Form 5005-R (Engineering Change Proposal—Software
both acquirer (or acquirer's designee) and developer as tasks inter(fECP-S)), is recommended for requesting changes to baselined soft-
nal to their organization. Each organization operates under its ownware. DA Form 5005-R is prescribed in AR 25-3. Guidance on
set of standard procedures and plans. For example, prior to deliveryusing the form can be found in DA Pam 25-6.
the developer usually manages software source code files with inter- h. The software developer is required to participate in all four
nal CM procedures referenced in the SDP. When a product baselin€lements of CM.
is delivered and routine maintenance is transferred to a LCSEC/ i. See MIL-STD-973 and DA Pam 25-6 for more detail on
PDSS agent, the applicable procedures are typically documented igoftware CM.

a CRLCMP or SCMP. j- The duration of this activity is the life time of the system.

f. Virtually all the following activities are governed by the k. The requirements stability and design stability metrics make
deve'oper’s SDP' or other p|ans incorporated to the SDP by refer_use Of |nf0rmatl0n fl’0m Conflguratlon status accoun'[lng records.
egce, such asﬁCl\/_I olr QA_deart:S. It is _e;_sential that the SDP be8_5 Software product evaluation
adequate to effectively guide those activities. : : .

g. Other activities may be added to those identified in this chap- b a. Software product evaluations assess the quality of products

; . uilt by the software development process. The developer is ex-
ter at the discretion of the PM and developer to address progranbected to perform on-going evaluations as products evolve and a

specific areas of concern. Examples are risk management, subfna| eyaluation of each deliverable software product prior to its
contractor management, and interfacing with IV&V agents, other delivery.

developers or working groups. b. Individuals evaluating a software product must be independent
L from the individuals that developed it.
8-3. Objective

= . L c. The consolidated software standards of paragraphdZdn-
The objective of these ancillary activities is to ensure that the efforts ify criteria and definitions for assessing a product's completeness,

?ggpg;?s?\ijemf‘oo:;éﬁmﬂirizveIOpmem are controlled, consistent, amiccu_racy, understandqpility, consistency, compl.iance to contractual
’ requirements, and additional factors, as appropriate for each product

when performing the test and evaluation activities in chapters 5-7.

d. Problems detected are entered into the corrective action
system.

e. Software product evaluation records are prepared and main-
tained to document the evaluations and their results.

f. The duration of this activity is the life time of the system.

b. Software configuration identification specifies all software re- g. Significant CE information can be gained from product evalua-
lated items to be placed under configuration control (for example,tion records and from the T&E activities in chapters 5-7. This

hardware, software, documentation, files, electronic media) and the, : . .
scheme by which each item will be uniquely identified. The identifi- information should be made available to members of the appropriate

. ; . e IPTs.
cation scheme must include the version, revision or release status o

the item. . _ o _ 8-6. Software quality assurance
c. A baseline is a specific set of configuration items and their  a. The software quality assurance activity monitors all software
associated identifications that are under configuration control. Mili- development activities and their products to ascertain compliance
tary Standard 973 defines the type of documentation that represenivith procedural and acquirer imposed requirements. The latter are
functional, allocated, and product baselines. usually contractual requirements including standards invoked
d. Configuration control is the systematic procedure by which through the contract, while the former are prescribed in the
changes to baselined CSCIs and HWCIs are proposed, justifieddeveloper's SDP or equivalent maintenance plan.
evaluated, coordinated, approved or disapproved, and implemented. b. Individuals conducting QA evaluations must be independent
This procedure is carried out by a configuration control boafrdm the individuals who developed the software product, performed
(CCB). CCB members, their level of authority to approve changes, the activity under review or are responsible for the software product
and the steps to be followed to request authorization for changesor activity.

8-4. Software configuration management

a. Effective CM is essential to support all other development
activities. CM is composed of four basic elements: configuration
identification, configuration control, configuration status accounting,
and configuration audits.

44 DA PAM 73-7 « 25 July 1997



¢. On-going audits, inspections or other QA evaluations are per- (4) Obtain timely acquirer approvals and commitments needed to
formed to assure that— accomplish the project within schedule, cost or other constraints.
(1) Each software development activity that applies to the pro- (5) Identify near and long term risks with respect to concerns not
gram, including the others in this chapter, is being performed in raised in technical reviews. The software metrics discussed in chap-

accordance with the SDP. ter 10 of this pamphlet can contribute to identifying areas of man-
(2) Each software product undergoes software product evalua-agement risk.

tions, testing, and corrective action as required. d. Representative management reviews have been identified in
d. Problems detected are entered into the corrective actitwe activity descriptions of chapters 5-7. Additional formal reviews

system. that may be appropriate for some programs are: software plan re-
e. Software QA records are prepared and maintained to documenview, operational concept reviews, test result reviews, software

QA actions accomplished and their results. usability reviews, software supportability reviews, or critical re-

f. The duration of this activity is the life time of the system. quirement reviews. The consolidated software standards in para-
graph 2-2d identify candidate issues for resolution at these
8-7. Corrective action meetings.

a. The objective of the corrective action activity is to ensure a e. Milestone decision reviews (MDRs) are required for all de-
consistent and controlled process for tracking and resolving prob-fense systems acquired via DODD 5000.1. Approval by the desig-
lems throughout the software development process. Problems anthated Government milestone decision authority is needed to
recommended changes to either software products or developmentommence the activities of the next life cycle phase. Figure 1-1
activities should be handled by a corrective action system. Typical-depicted the standard system decision milestones and phases. Mile-
ly, items must be under project level or higher configuration control stones are sometimes tailored or combined as is most effective for a

before the following requirements apply. particular program. During a MDR, the status of all major aspects of
b. Requirements for a corrective action system are— the system’s development progress are reviewed including DT and
(1) Consistent use of standardized problem/change reports to docOT results to date and whether the TEMP’s exit criteria from the
ument problems. current phase have been satisfactorily met. Movement to the next
(2) Consistent classification and prioritization of software prob- life cycle phase is recommended, as appropriate. Exit criteria for the
lems in accordance with paragraph 22 next milestone review are also established. Decision authorities for
(3) Analysis of data in the corrective action system to detect major defense programs are the Defense Acquisition Board (DAB),
trends in reported problems. ASARC, and MAISRC.

(4) Periodic evaluations of corrective actions to determinef. An in-process review may be requested by the milestone deci-
whether problems have been resolved, adverse trends have bee#ion authority at any time. It is similar but narrower in scope than
reversed and changes have been correctly implemented without inan MDR. The purpose of an IPR is to determine—
troducing additional problems. (1) Current program status.

(5) The corrective action system be closed-loop. That is, all de- (2) Progress since the last decision authority review.
tected problems are promptly reported, entered into the system, (3) Program risk and risk reduction measures.
action to resolve them is initiated, resolution is achieved, status of (4) Potential problems that require guidance.
problems is regularly reported, and corrective action records are d. The software metrics discussed in chapter 10 of this pamphlet
maintained. can contribute to reporting program status at MDRs or IPRs.

c. The fault profiles, reliability, and requirements stability metrics
examine various aspects of the corrective action system.

d. Different organizations may employ different corrective sys-
tems throughout the life of a project, however the requirements
above apply to all corrective action systems.

8-9. Other considerations

Program, project, or product managers of designated major AIS
(MAIS) programs must report quarterly through the PEO to the
appropriate DOD chief information officer in accordance with DOD
5000.2—-R. The status of the program, its progress, significant issues,
8-8. Joint reviews risks and risk reducing strategies are accounted. Many of the CE

a. Joint technical or management reviews among developer and@ctivities and metrics discussed in this pamphlet can contribute
acquirer personnel are convened for the purpose of reviewing thedirectly to the PM's assessment of—
status of the project or product, to surface and resolve outstanding @ Schedule and progress.
issues, determine and concur on strategies to mitigate identified D- Growth and stability.
risks and to foster communication. It is recommended that users also C- Funding and personnel resources.
participate, especially in demonstrations involving user interfaces, in  d. Product quality.
order to elicit feedback based on the users view from a total €. Software development performance.
mission perspective. Specific reviews are not mandatory, but some f. Technical adequacy. _ 3 _
degree of formal interaction between developer and acquirer is necSee chapter 10 for an illustration that correlates specific metrics to
essary and may be mutually agreed upon. MAIS assessment issues.

b. In addition to areas covered in item paragragbove, techni-
cal reviews typically—

(1) Examine in process or final software products for accuracy,
consistency, completeness, adequacy of testing information, Sh@pter 9 ) )
understandability. Post Deployment Software Support Considerations

(2) Review and demonstrate proposed technical solutions.

Ezg ELC;:‘/;éZ Igrfljgr1rte§(;}3eotl:)cet?;1nni];fa?digzﬁzson the technical effort. b, deployment software support refers to modifications or up-
. ! o . grades made to a system’s software following the system’s MS Il
o e e o yiecison review and il fing. This chapir outines issues
; Lo X o ’ - ertinent to and approaches for addressing those issues.
of this pamphlet can contribute to identifying areas of technical risk. PP g

9-1. Purpose

c. In addition to areas covered in item paragrapdbove, man- 9-2. Scope

agement reviews typically— a. This chapter applies to the production and deployment, opera-
(1) Review overall project and software product status. tions, and support life-cycle phases.
(2) Resolve open issues from technical reviews. b. System modifications and upgrades include multi-system
(3) Surface and resolve management issues. changes, block changes, preplanned product improvements, class |

DA PAM 73-7 « 25 July 1997 45



ECPs, and system change packages. In this chapter, the modificsomputer resources (hardware, software, firmware or

tions of software and computer resources, regardless of how thecommunications):

change is implemented, is referred to as a software change package. (1) Have a physical impact on either the operation or support of
c. System changes that are extensive enough to warrant approvahe system.

as a major modification in a post MS Il decision review are not (2) Have a noticeable impact on the system’s operational effec-

considered PDSS, but a variation of a new program start. Thetiveness, suitability, and survivability, affect user interfaces, or im-

milestone decision authority determines which acquisition phase thepact critical mission functions.

program should enter. (3) Cumulatively affect 15% or more of the software units in the
d. The applicability of procedures in this chapter to any given system since the last time such evaluations were made.

program and the extent to which they are carried out is dependent o )

on overall system factors, such as deployment philosophy, fhe- Determining test support needed for independent

criticality and urgency of a change. evaluation ) _ _ i
a. The procedure described in this paragraph assesses various

9-3. Objective aspects of the deployed system’s T&E history, current maintenance
The objective of PDSS is to correct deficiencies. Deficiencies in- €nvironment and potential impact of the SCP on the system’s opera-
clude both problems reported by users or detected during softwardional effectiveness and suitability. The intimate knowledge and

maintenance, and modifications needed to improve system softwarénformed judgment of the test IPT and CCB principals should guide
to meet new or changed requirements. the decisions made in applying the procedure described in this

paragraph and in interpreting its results.
9-4. PDSS issues b. There are several steps in the procedure:

a. The PDSS environment generally produces many small(1l) Determine the potential problems for a SCP using figure 9-1.
changes over a period of time rather than a few large changes. The (2) Determine the likelihood of each problem using table 9-1.
PDSS organization typically collects these changes into a few for- (3) Determine the severity of each problem using table 9-2.
mal software releases to avoid disrupting the fielded system. Differ- (4) Combine the findings of tables 9-1 and 9-2 to determine the
ences in the amount of change to software and timing of softwareamount of testing needed for that problem using table 9-3.
releases should be considered in identifying the scope of total T&E (5) Tailor the DT and OT measures of performance (MOPs) and
required and the extent of T&E team involvement. measures of effectiveness (MOEs) to address the problem.

b. Software development activities performed in PDSS are the c. Examine all DT and OT MOPs needed to adequately test the
same as those carried out prior to first fielding. They are tailored asSCP to plan the necessary test events. It is the responsibility of the
appropriate, however, to reflect the effort required to implement evaluator to determine the most effective mix of DT and OT to
each SCP, update pertinent documentation, verify the SCP, andsupport their evaluations. This could entail substantial use of
issue changes to users. The scope of the change and the criticality afeveloper test information, concurrent DT/OT exercises, simula-
affected software units should be considered in determining thetions, or other strategies. See chapters 3 and 6 of this pamphlet and
SCP’s T&E strategy. DA Pam 73-4 and DA Pam 73-5 for guidance on planning develop-

c. If a SCP does not have operational impact, then the PDSSmental and operational tests.
agent determines the action necessary to support the decision to d. It is recommended that the figure 9-1 checklists be used sev-
field the change. The maintenance PM determines— eral times during the course of SCP planning and implementation to

(1) The scope of software change in the SCP. improve the estimate as more information becomes known. The last

(2) The amount of rework necessary to implement the changescheck should contain no “ unknown” answers—mark these as “ yes”

(3) The amount of testing needed to ensure that new or modifiedt0 represent worst case.
functions operate properly and that no new errors have been
introduced.

d. Ch that introd ised tional require- Lo -1 o

- Changes that introduce new or revised operational require-peermining problem likelihood

ments or changes that may have an operational impact on the sys —
tem require independent developmental and operational evalluati0ns'?m:jl""b'“t_y of
Testing must provide the information needed to evaluate the impact”®>°™ '

When the problem will—

of the change. Very High
e. The urgency of delivering a change to user agencies may haverigh
an impact on the extent and thoroughness of a given T&E effort. ’Cﬂedlum
ow

9-5. Controlling software changes

Occur frequently in the system'’s life

Occur several times in the system'’s life

Likely occur at some time in the system’s life
Probably not occur in the system’s life, but may
occur

a. Changes to the software production baseline are documented
on ECP-S and categorized based on the urgency of implementation
in accordance with MIL-STD-973 (emergency, urgent or routine).

They are also prioritized in accordance with paragraphf 2efative Table 9-2

to the impact on operational mission effectiveness.

Determining problem impact

b. An ECP-S often addresses a set of related problem/changempact of problem

reports. Packages of changes are approved and scheduled for implée—

If the problem causes—

mentation by the appropriate CCBs (see chap 8). Catastrophic

9-6. Scope of testing Major
a. The developer performs software unit testing and unit integra-
tion and testing of the new or modified software units. Minor
b. The developer should repeat some or all aspects of qualifica-
tion testing (CSCI and system) to demonstrate that previous requireNegligible
ments are unaffected and new or modified requirements are met.

Mission failure, loss of system or loss of person-
nel

Severe mission degradation, personnel injury or
system damage

Slight mission degradation, personnel injury or
system damage

Less than minor personnel injury or system dam-
age, no mission degradation

c. When independent developmental or operational evaluations
are necessary, the procedure outlined in paragraph 9-7 can assist in

determining the level of DT/OT needed to support those evalua-9-8. Other considerations
tions. In general, these evaluations are needed when changes in a. System post deployment review.

46 DA PAM 73-7 « 25 July 1997



(1) The PM should plan to convene one or more system post- b. Emergency change response to critical situations, emer-
deployment reviews (SPRs) during PDSS to determine how well thegency changes may need to be released to the field within 48 hours.
system is functioning. The first SPR is recommended approximatelyWhile all changes must undergo validation, verification, and regres-
6 months after all initial units are equipped or all site installation is sion testing, emergency changes to deployed systems may not re-

completed. The review should assess— quire formal developmental testing or operational testing prior to
(a) How well the operational system is satisfying user require- release. All emergency changes, however, will undergo formal test-
ments to meet the stated mission. ing with the next planned updates. The PM, with the concurrence of
(b) The degree to which the system operates as the user expecthe system user, may only be capable of performing limited testing
and provides the services expected. of emergency software corrections prior to granting release.

(2) The PDSS agent uses SPR results to identify problems areas c. Test reusability.Test cases, data, and procedures stored in
and develop changes that will improve system performance anddeveloper SDFs may be necessary or desirable for enabling the
usability. Additional reviews throughout the deployment and opera- LCSEC/PDSS agent to retest software during maintenance more
tions phase provide assurance that the SCPs continue to satisfy useffectively. If so, the appropriate items should be included in the
needs and improve overall system quality. Content of the reviews istechnical data package delivered by the developer.
dictated by the initial system corrective actions, problem areas and

changes.

Table 9-3

Degree of DT/OT needed to support evaluations

Probability Potential problem impact

of problem Negligible Minor Major Catastrophic
Low Light Moderate/Light Moderate/Light Moderate
Medium Light Moderate Heavy/Moderate Heavy

High Moderate Heavy/Moderate Heavy Intnsv/Heavy
Very High Moderate Heavy Intnsv/Heavy Intensive
Notes:

Intensive: Up to and including full repeated DT/OT from MS Il plus changes
Heavy: DT with significant OT

Moderate: DT with OT excursions

Light: DT

DA PAM 73-7 « 25 July 1997 a7



Checklist for Determining Potential Problem in Implementing a Software Change Package Yes | No | Unk
1. Items concerning system performance
a. Does the software change affect the way the system operates? X
b. Does the software change affect the system's operational capability, to include:
oy MNS, ORD or operational mission profile? X
2 qualitative and quantitative personnel requirements? X
3) the operational environment? X
4 critical operational issues? X
(&) operating procedures? X
c. Does the software change affect a critical mission function of the system? x
d. Does the change affect safety or security features? x
e. Does the change affect the system's critical operational issues and criteria (COIC) or X
additional operational issues (AOI)?
f. Does the change affect the system's critical technical parameters? X
Will there be a significant change in the system's throughput? In the throughput of X
particular components?
i. Will there be significant changes to the support software (e.g., operating system, DBMS)? X
2. Items concerning interoperability
a. Does the change affect interfaces with any other systems? X
b. Is there a change in code for the interface with nondevelopmental (COTS) software? X
c. Isthere adverse change in system performance caused by execution or management of X
peripheral devices?
d. Are protocols for communication links affected? X
e. Are there changes in the input or output formats? X
f.  Does the software modification impact other hardware/software interfaces? X
g. Will there be changes to procedures for exchanging information with other systems?
(1) within the battlefield functional area? X
(@A) with other battlefield functional areas? X
3 with strategic or theater level systems? X
(€] with joint systems? X
o) TAW international agreements? X
3. Items concerning usability
a. Is there a significant change in the user displays/reports? X
b. Will there be significant changes to the training program? X
4. Items concerning system support
a. Does the change affect the system's support facilities (e.g., software tools, support X
personnel, support equipment, support documentation)?
b. Does the change affect built-in test equipment? X
c. Will there be a change in the organization responsible for PDSS? X
d. Does the developer lack experience with the tools or products used to make the change? X
5. Items concerning software metrics
a. Do any requirements remain untested? X
b. Were there any catastrophic or major problems (as defined in Table 9-3) experienced X
during last deployment of the system?
c. Did any catastrophic or major problems occur during any previous testing of this change X
package? Do any priority 1 or 2 problem reports remain open?
d. Is the number of source lines of code added, deleted, or modified greater than 10% of the X
total fielded source lines of code?
e. Is the use of computer resources likely to exceed their target upper bound? X
f. Have all changed requirements been traced to code and test cases? X
g. Does the system currently meet its mean time between failure requirements? X
h. TIs the change package more than 15 percent behind schedule? X

Figure 9-1. Example checklist for determining potential problems in implementing a software change package

48

DA PAM 73-7 « 25 July 1997




Chapter 10 issue of interest. For instance, to address whether a program can

Army Software Metrics remain on schedule, relevant metrics include schedule, requirements
and design stability, development progress, depth and breadth of

Section | testing, and fault profiles. Each metric description includes manage-

General ment information and correlations with other metrics where analysis

) of program issues takes place.
10-1. Introduction

a. This chapter describes 14 software metrics for gathering infor- 10_4. Application

mation over the life cycle of Army software-intensive systems.  The preceding chapters relate the activities of software development

b. Collecting additional metrics is also encouraged to support the g software metrics. Figure 10-2 shows the application of metrics
unique needs of specific agencies or programs. The Practical Softoyer the life cycle. The same metrics used to monitor the develop-
ware Measurement initiative provides guidance on selecting otherpent activities described earlier in this pamphlet are used to monitor

metrics. o _ _ _ the corresponding activities during PDSS.
c. Many activities contribute to assessing software quality and

maturity as described in preceding chapters. The results of thoseg_5 Metrics program considerations
activities, however, cannot all be expressed as uniform, quantitative;, order to gain the most useful insight into software processes and
measurements. Qualitative factors remain important to any softwar roducts, the following should be considered when planning a met-
evaluation. Quantitative measures, such as metrics, are less subje¢.q program or when analyzing metrics data:
tive in their interpretation and make changes from previous behavior
easier to detect and measure.

d. Software metrics are only one of many factors to consider
when evaluating software maturity.

a. Be sure the metric data definitions are consistent. For example,
the definitions for unit, module, function, and lines of code should
be established and followed for the project by all involved in collec-
ting and interpreting the metrics.

10-2. Policy requirements _ b. Me_tric displ_ays should be combine_d with other_qualitative

a. Previous Army policy required program managers to use and information. Decision makers must consider program issues when
report the first 12 metrics in section Il. Recent acquisition reform @nalyzing and evaluating metrics data. _
guidance precludes PMs from requiring developers to use and report C. Metric displays should be used to portray trends over time,
a specific set of metrics. The 14 metrics in section Il have provedrather than placing too much importance on a calculated value at a
useful in addressing issues integral to managing risk in software-single point in time.
intensive programs. The description of each metric includes a tailor- d. Never use metrics to evaluate personnel. People will focus on
ing section with suggestions for alternative implementations. The manipulating metrics rather than doing their jobs.

PMs also have the flexibility to implement each metric to take e. Metrics can be expensive in terms of resources. Tailor them to
maximum advantage of the information their software developer hasuse data already available from the software developer. Appendix B
on hand. discusses how to contract for a software metrics effort.

b. Department of Defense Directive 5000-2R requires software
metrics be used on all acquisition category (ACAT) I, IA, and DOD 10-6. Organization and approach
oversight systems. The cost, schedule, requirements traceability an@ach software metric is presented in the following format:
fault profiles metrics adequately support these reporting require- 3. Description. The type of information the metric is used to
ments. DOD policy also requires those systems to demonstrate, priokssess or present for viewer analysis is briefly described.
to entering dedicated operational testing, that requirements and de- . Application.The typical period(s) in the life cycle when mean-
sign are stable and that adequate and sufficient testing of softwarfgngfm data are available to support the metric. A reporting fre-
and interfaces has occurred. The requirements stability, design Staquency is recommended to allow timely trend analysis and to
bility, depth of testing and breadth of testing metrics can serve thisipjtiate” corrective action, if needed. Other information to consider
purpose. ) _ before actually collecting the metric is provided when appropriate.

c. DOD 5000-2R requires MAIS programs o report their prog- ¢ pata definitionsRecommended data items and the level(s) at
ress quarterly (see chap 8). The metrics in this chapter can providg i it is appropriate to collect the items are listed here. The
considerable information in preparing these status reports. An illus-yotoiione are elaborated in appendix C.
tration applying the Army metrics to each management issue in the d. Presentation and analysi§ample displays are provided for

report is supplied in section Il viewing and interpreting the metric data.
10-3. Types of metrics e. Management informatiorRrogram issues that the metric ad-

a. The Army metrics fall into three general categories as shown dresses are discussed in this paragraph, as well as guidance in
in figure 10—1. Management metrics deal with contracting, program- related areas that may require additional management planning or
matic, and overall management issues. Requirements metrics pertaifl€cisions. Guidance in evaluating this metric with others in this
to the specification, translation, and volatility of requirements. Qual- pamphlet to derive a more complete picture of software product
ity metrics address testing and other technical characteristics ofmaturity is provided.
software products. f. Tailoring. Alternatives for data presentations, reporting fre-

b. Software development projects typically track the information quencies, level of data collection, or other pertinent information
and collect the data items needed for the metrics described in thigegarding the recommended approach are offered.
chapter. This detailed data, however, is often used only at lower
levels of management within a developer’s organization. SummariesSection ||
are not usually reported to higher level managers in a form suitableThe Army Metrics Set
to support program management decisions. The suggested metric
displays presented in this chapter should be annotated with prograni0—7. Cost metric
specific information. The resulting information displays will provide a. Description.The cost metric provides insight into the actual
program managers with the insight needed to make informed deci-cost expenditures for software development tasks, compared to the
sions on software management issues. Displays other than thosmitial cost estimates. Data for the metric were selected from the cost
suggested may be appropriate depending on the decisions to baccounting system used for most DOD acquisition programs, the
made. cost/schedule control systems criteria (C/SCSC). The C/SCSC, de-

c. Several metrics are often needed to evaluate an activity or anscribed in DOD Instruction (DODI) 7000.2, is used to track cost,

schedule, and technical performance.

DA PAM 73-7 « 25 July 1997 49



Metric Objective Measurement

Management Metrics

Cost Track planned and actual S/'W $ spent vs § allocated
expenditures

Schedule Track schedule adherence Milestone/event slippage

Computer resource Track planned and actual resource use % resource capacity used

utilization (CRU)

Software engineering Quantify developer S/W engineering Overall maturity level and key

environment (SEE) capability process area scores

Manpower Track planned and actual effort and # labor hours and # personnel
staffing

Development progress Track planned and actual work unit # units designed, coded, integrated
completion

Requirements Metrics

Requirements traceability Track reqts to code and test cases % reqts traced

Requirements stability Track changes to reqts

Quality Metrics

Design stability Track design changes Stability index

Complexity Assess code quality Complexity indices

Breadth of testing Track testing of reqts % reqts tested and % reqts passed

Depth of testing Track testing of code % of code and data conditions
tested and passed

Fault profiles Track open vs closed anomalies # and types of faults, average age
of faults

Reliability Assess system mission failures caused by MTBF

S/wW

Figure 10-1. The Army’s software metrics

b. Application. program can be classified as a cost element. Procedures for develop-
(1) Data collection and reportingCost data collection begins at ing a WBS and its hierarchy of levels are defined in Military
the start of the program and continues through fielding and PDSS Handbook (MIL-HDBK) 881. The handbook provides examples of

The recommended reporting frequency for this metric is at the endsoftware development activities with definitions of the work per-
of each financial reporting period, which is typically monthly. formed in each type of activity.

(2) Preparation. (b) The WBS should allow software costs to be accountable to

(2) The first step in applying the software cost metric is to iden- individual computer software configuration items (CSCls), builds,

tify the appropriate software work tasks, or activities, as cost ele- bsystem ¢ d d iate for th fivit d
ments in a program. Identifying cost elements allows managers toouPSystems or system as deemed appropriate for the activity an

monitor system software cost risk issues. Cost accounting elementi€V€! of visibility needed to monitor risk effectively.

are identified through the use of a work breakdown structure(C) Table 10-1 contains examples of development activities dis-
(WBS). A WBS element is an identifiable item of hardware, soft- cussed in this pamphlet and collection level recommended for the
ware, services, data or facilities. As a general rule, every develop-cost metric. The WBS elements in the table primarily cover techni-
ment activity in chapters 5 through 8 that applies to a particular cal effort related to producing and maintaining application software.

50 DA PAM 73-7 « 25 July 1997



Milestones [mso] [ms1] [msu]

it l Requirementsl l Reagts Analysis l Coding, Developer
Activities Definition and Design and Gov't Testin

PDSS * I

Management Metrics
Cost

Schedule

Comp Resource Utiliza.
S/W Engr Environment A
Manpower

L R & 4

o | ¢ 9
$0> 'Y

Development Progress

QQDQQL

YY YvY

Requirements Metrics

Reqts Traceability <
Reqts Stability +

! X

Yy

Quality Metrics
Design Stability *

Complexity @ === memeceececmmeaeea=-
Breadthof Testihg @ =  +cc-ccccccccccecmem==-

DepthofTesting @ =  ccccccemceccmme=e==

<+

FaultProfles @ = W ;ccaceccesececscccccac==-

+

Reliability = = aa;-a e e mm . —————-—

*

4 Report at Milestone Review recommended
= = Apply if prototype software will be used in later phases

+

Continue to apply the same metrics as were applied during similar activities pre-MS 11l

YYYYYY

Figure 10-2. Metrics during the life cycle

(d) As appropriate, items dealing with data center facilities, serv-
ices and hardware, or database administration and maintenance
should also be tracked with the cost metric if they are considered
potential risks to overall program cost or schedule objectives.

DA PAM 73-7 « 25 July 1997

51



Table 10-1

Examples of software related WBS elements/development
activities

By CSCI? By (sub)system

S/W requirements analysis 2
S/W design 2

S/W implementation & unit test-
ing 2

Unit integration & testing 2

CSCI qualification testing 2
Corrective action (S/W PCR res-
olution) 2: 3

Software data

System requirements analysis
System design
S/W development environment 2

CSCI/HWCI integration & testing 2
System qualification testing 2
Project planning & oversight

Joint reviews

S/W quality assurance 2

S/W configuration management 2
S/W product evaluation 2
Verification and validation 2

variance less than zero (for either cost or schedule). Consistently or
increasingly negative values for variances indicate that the system
may be delivered behind schedule or may exceed the budget.

(3) Cost is associated with all products and activities and can be
related to all other metrics. In general, an unfavorable trend in some
other metric may adversely affect cost.

(4) The cost metric compares actual software expenditures of
work done to the original budget. When assessing overall cost sta-
tus, however, consider the amount of unfinished work to be done
under the remaining budget. Other metrics that show the remaining
schedule events, requirements not yet traced and implemented, and
number of unresolved software faults provide information about the
amount of work remaining. Insight to the risk in achieving software
maturity can be derived by estimating the cost of re-work to fix
faults and to complete the trace and implementation of requirements
to final software products.

S/W fielding 2 (5) Be aware that cost information may arrive as much as 60 to
SIW transition 2 90 days behind the delivery of other metric data. When evaluating
Total 2 # other metrics with cost, be sure that comparable time periods are
Notes: examined.
1 Separate accounting of CSCls by build may be appropriate. f. Tailoring.

2 Recommended for cost metric tracking.
3 Includes applicable rework (redesign, recode, unit re-integration and test).

4 Sum of all software development activities, plus any other software related
costs.

(1) The acquirer can stipulate that developers report costs at any
level of detail required to effectively monitor the program. Tailoring
the cost metric involves developing a WBS that adequately iden-
tifies software elements and organizes them at the WBS level most
appropriate to expose program risks. The WBS reporting level
c. Data definitions.The fO”OWing data items are collected for Sh0u|d satisfy the risk management questions of each individua|

each reported software WBS activity. Identification of the applicable program. The activities tracked by the cost metric come from the
CSCl, build, and system may be needed in addition to the items\ygg.

below.

(1) Budgeted cost of work scheduled: The budgeted cost of wor
scheduled (BCWS) is the sum of the budgets for all work packages, _ _
the level of effort, and apportioned effort scheduled to be accom- CPI = BCWP/ACWP and' S_Pl _.BCWP/BCWS'
plished within a given time period. Values.less th.an one for thes.e indices indicate costs and schedules

(2) Budgeted cost of work performed: The budgeted cost of work €Xceeding estimates, respectively.
performed (BCWP) is the sum of the budgets for completed work (3) A number of commercially produced automated tools are
packages and completed portions of open work packages, plus thavailable that can compute BCWS, BCWP, and ACWP based on the
applicable portions of the budgets for level of effort and apportioned accompanying WBS. Using the output of these tools is an effective
effort. Some accounting methods refer to BCWP as earned valuemethod of tailoring the cost metric.

Some methods allow earned value for complete activities, while
others allow earned value to accrue incrementally. 10—8. Schedule metric

(3) Actual cost of work performed: The actual cost of work 5 pescription.The schedule metric indicates the degree to which
performed (ACWP) is the cost actually incurred in accomplishing program events adhere to a work schedule plan and complements
the work perfo_rmed within th? given time period. the schedules typically used on programs. This is accomplished by

d. Pr_esentatlon and analysis. regular reporting of actual achievements in relation to the original
_ (1) Figure 10-3 shows a sample graph of cost values plotted ovelgcheqyle. Most importantly, the recommended displays for the
time. Because the cost metric is usually derived from the DOD'S gopeqy e metric show the changes to the schedule for future events,

C/SZCSTCh dgta,r th":‘h'st th? rTOSt tcon?mon drlrsplay.ndt their original " time. Monitoring schedule changes will indicate the level of
IaEnZIe d ?/alggsegan 132;;&2 dv:nudes Igct)tegsg\c/)er ti?ne le ?N(Iaglll aAlrisk associated with achieving future program milestones and pro-
p P ' _viding key software deliverables on time.

sample graph for the derived values of cost and schedule variance$ S

is shown in figure 10—4. Note that a zero value for variances means P- Application.

that the planned budget and schedule were achieved. Cost/schedule (1) Data collection and reportingData collection for the sched-

performance values, or variances, are— ule metric begins at program start and continues through fielding
(a) Cost variance (CV) is the difference between planned and and PDSS of the system. The recommended reporting frequency for

actual cost. this metric is monthly.

CV = BCWP - ACWP (2) Preparation.Software development and maintenance pro-

(b) Schedule variance (SV) is the difference between the amountgrams normally establish a schedule similar to that shown in figure
of work planned to be performed and actually completed. 10-5. Identify any milestone, event or activity which may pose a
SV = BCWP — BCWS risk to meeting software or system schedule goals if not initiated or

e. Management information. completed on time. Track these events with the schedule metric. It

(1) Software cost elements may include any expenditures re-is often advantageous to track events for individual CSCls and
quired to develop or maintain a software product. The key to properpids separately.

application of the cost metric is to identify those WBS elements
pertinent to software which pose risk to the overall program.

(2) Exceeding the budget allocation at any point in a program is
cause for concern and investigation. This is easily detected as a

K (2) Some accounting methods use the cost performance index
(CPI) and the schedule performance index (SPI).

52 DA PAM 73-7 « 25 July 1997



Cumulative Cost

CSCt: Transform Report Date: 8/4/93

System Name: Woksel

1600000

1400000 -

1200000

1000000

800000

Dollars

600000

400000

200000 -

1 2 3 4 5 6 7 8 9 10
Program Month (8/92 - 7/93)

11 12

Figure 10-3. Sample cost expenditure graph

Cost Performance Trends

System: Woksel CSCI: Transform Report Date: 8/4/93

A——aA

-100000 -

-200000

Dollars

-300000

-400000

-500000 T T i T
1 2 3 4 5 6 7 8 9 10

Program Month (8/92 - 7/93)

| —+—— Cost Variance — —4—— Schedule Variance

Figure 10-4. Sample cost performance trend graph

DA PAM 73-7 « 25 July 1997

53



A A A JiN A A YAN

R:ins Rs:rs C:ETEANL IPR 1 1PR 2 IPR3 IPR 4
E
REVIEW REVIEW REVIEW A A A A
TEST| TEST TEST TEST
, SW PROTOTYPE ] BUILD 1 BUILD2  BUILD3 BUILD4
DEV ENG DEL
[ VERSION 1 DEVELOPMENT
CSCl 1 DEV
{ cscizoev ]
| csciapev |
L cSQ) 4 DEV |
L CSCISDEV |
I CSCl 6 DEV ]
[ escizoev ]
| cscispev |
NOTE: This chart Is for €SCi 8 DEV
example only. Times may not
be realistic for many programs. A A A A
BUILD 1 BUILD 2 BUILD 3 BUILD 4
L | ] | | | | | L | | | L
JAN  FEB MAR APR  MAY JUN  JUL AUG  SEP OCT NOV  DEC
Today

This schedule shows current status in July. One cannot see how it compares
to the original program schedule.

Figure 10-5. Typical program schedule

c. Data definitions.For each item selected for schedule metric several software development activities are plotted over the month
monitoring collect— in which the data was reported. The graph clearly shows the com-
(1) Planned start date. pression of time between the start of software requirements analysis
(2) Planned end date. and design. To read the graph, find the metric reporting date (pro-
(3) Actual start date. gram month) on the x-axis and read the appropriate planned start
(4) Actual end date. _ o date on the y-axis. For example, at month one, requirements analy-
d. Presentation and analysimiformation displays for the sched-  gjs was planned to start in month two, and the software design was
ule metric focus on the difference between the original plan andhianneq to start in month seven. At month two, the start of require-
i Syalms i that new schedules, simiar o figure 10.5, are fseud NS analyss has sippe to month three (a sip of one month), but
to completely replace previous schedules. The result is that informa- Ee start O]; softV\_/are design h|a1$_retr1na|ne|_d thz same. Atg month f|ve|,
tion on the original time allocations is lost. Without the ability to t © start of requirements analysis has slippe to month six (a_ tota
compare a new schedule to the original schedule, it is difficult to SiP Of four months), and the software design schedule has slipped
determine if changes are realistic, or if program risk has been®nly one month.
increased. (2) Another recommended display is shown in figure 10-7. This
(1) One recommended display of schedule data is a graph ofgraph is similar to figure 10-5 but uses bars to represent long-
planned start dates for program milestones and key software deliverduration events. The bottom of the bar represents the planned start

ables over time, as shown in figure 10-6. Planned start dates for amlate for an activity; the top of the bar represents the planned end
event are plotted until the event actually begins (that is, an actualdate.
start date is reported). In this example, the planned start dates for

54 DA PAM 73-7 « 25 July 1997



Event/Activity Planned Start
System: PAC-CASS Report Date: 5/2/94
20
i -
i = — == - —— e
6 T - — o —— -
; i Yl i
‘ o SN IR »
2
© - SETPPPIN ™ STRETE [ R - [ EETTTTIN »
2 12 4
5 - A
n ‘ P A--- ' QRIS ar
-§ 8 1. '——‘— ————
% ‘ ______ A ______ ‘ ...... A s
4 V
o -+ " ‘ : : l : . f i —
1 2 3 4 5 6 7 8 9 10 11 12
Program Month (5/93 - 4/84)
. ——=——  S/W Reqts Analysis --.---=  S/W Design :
R - Unit Testing —-—x—-~ [ntegration Testing !
J
Figure 10-6. Sample schedule metric graph
Schedule - Event Duration
System: AAPS CSCIl: D_ENTRY Report Date:5/2/94
16
14 77777
[%2]
=
= \ o ) Vo V) V) V) V)
Q
=
2
0
1 2 3 4 5 6 7 8 9 10 11 12
Program Month
Requirements Analysis

Figure 10-7. Sample graph of changes in activity durations

e. Management information. can delay one or more of the events that follow it. Failing to adjust

(1) The most common problem with a software program schedulefuture schedule dates after slipping an earlier event reduces the time
is that realistic adjustments of the schedule are not made in responsand budget to complete future software-related activities. Maintain-
to early changes in program events. Events that do not start on timéng the original end dates in a schedule after early delays usually
often do not end on time. In a chain of events, a delay in one eventequires additional resources.

DA PAM 73-7 « 25 July 1997 55



(2) The schedule metric indicates potential risks in meeting the (b) Establish a target upper bound on utilization for each re-
schedule for future activities. The recommended displays shsweurce. The upper bound is often set to reflect the amount of unused
clustering or “ bunching” of events or whether the amount of time reserve capacity the resource must have to ensure adequate system
allotted for long-duration events has been shortened or extendedperformance and to provide a margin for growth after delivery.
Bunching occurs when schedule slips are experienced in e®bsource measurements below this value are considered acceptable.
events and future program events retain their original schedRiadings above the upper bound are cause for further investigation.
dates. If bunching is allowed to continue, there may not be enoughThe bounds should be set low enough to allow remedial action to be
time to complete all future scheduled events. planned and initiated while allowing work in progress to continue in

(3) The PM may wish to establish criteria for action to be taken the short term. Target upper bounds for hardware resources are
in response to schedule changes revealed by the metric. Events tha{stem dependent. A target upper bound is usually set no higher
have slipped several times, events whose time allocation is considerthan 50 percent for all resources in MSCR programs (see DA Pam
ably shortened or lengthened, or failure to reschedule future eventsy0-3). An upper bound of 70 percent utilization for AIS may leave
after significant changes have occurred to early activities may needadequate reserve. Target upper bounds for all computer resources in
to be justified by the developer. a system need not be identical.

(4) Since schedule is associated with all software products and (c) In multi-processor environments, each processor should be

agtr:\g:gsya;hlﬁn;g\e;glr;b?srlr:r? dci(r)]rrsetl)arlrt]eedomtet} ﬁwllet?itser;ame;rtljflse'rslgl tracked separately, and each should be allocated a planned utiliza-
gffect tt’1e schedule Y Yion. For memory, the resource measured is random access memory
' (RAM). The RAM for this metric refers to both volatile and non-

(5). The schedule metric can be used in conjunction with Othervolatile (for example, read only) memories. For storage, resources
metrics to assess program risk. The fault profiles and development

; AN : include disk space and other mass storage.

progress metrics provide information about the amount of work S
which remains to be done. The cost metric indicates if resources are (d) Resource utilization is often measured by the host or target
available to accelerate the work rate and meet the original scheduleSOmputer system. While the measurements contribute slightly to
The cost and schedule metrics together can be the best early indic&yStem overhead, these features typically come with computer sys-
tors of problems areas, allowing managers to focus attention in thesééms in their off-the-shelf configuration. In instances where the
areas and resolve problems before they get out of hand. system does not measure itself in terms of resource _utl_llzatlon,. the

(6) Note that the schedule variance computed under the costitilization should be measured using probes or other similar devices.
metric does not identify specific events which are behind or ahead (e) CRU should be measured when the system is operated in
of schedule, nor by how much in terms of calendar time. The accordance with the operational mode summary/mission profile dur-
schedule variance only indicates how many dollars the program ising development, typically during qualification testing, DT, and OT.
behind or ahead of schedule. c. Data definitions.

f. Tailoring. It is often easier to portray the schedule metric in a (1) For each computer hardware resource in the system collect—
tab]e_ _Ilstlng the planned and actual start e_lnd end_ dayes for key (a) A resource identifier.
activities. The graphs, however, present the information in a format by T i
which makes the changes to future event allocations much easier to (b) Type of resource.

see. (c) Units of measurement.
(d) Maximum capacity of resource.
10-9. Computer resource utilization metric (e) Target upper bound on resource usage (percent of capacity).

a. Description.This metric shows the degree to which estimates  (f) projected resource usage (percent of capacity).
and measurements of computer resources are changing or approach-
ing the limits of resource availability. Constraints in computer re- :
source utilization can lead to poor performance in the operational (2) It |/s re%omm?nded to tra((:jk e_1t least tge hardware resources of
environment. The primary objective of this metric is to determine CPUs, l/O channels, gtorage evices, and RAM.
whether computer resources are adequate to handle the most de- (3) For each CSCI in the system collect—
manding anticipated operational workloads. A second objective, no (a) CSCI identifier.
less important, is assurance that reserve capacity for future mainte- (b) ltems b through g of paragraph 10€@l) above for the
nance and enhancement exists prior to initial fielding. CSCI's allocation and use of a particular hardware resource.

b. Application. (4) It is recommended to track at least the RAM and mass stor-

(1) Data collection and reportinglnitial values for computer age used by each CSCI.
resource allocations and acceptable limits on utilization are derived (5y Actyal usage should be measured during peak operational
from system requirements during the system requirements analySiierings and should include the operating system and other off-the-
activity. As system requirements are distributed among hardwaregne it software as well as the software being developed. Similarly
and software items as a result of the system requirements analysi rojected usage should be based on estimates of peak operatior;al
system design, software requirements analysis and software deSigBeriods and should include the off-the-shelf software and the soft-

activities, more refined values are available. The activity descrip- ware under development. Peak load conditions for computer re-
tions in chapter 5 provide more detail on this process. Collect host

. . sources usually occur under the operating environment and
(software development/test environment) estimates of resource allo-. . .
cations and projected usage, then the estimates for the target plaﬁlrcumstances .descrlbed n the OMS/MP.

form. Measurements during the development period should bd&- Presentation and analysis.

reported monthly. The CRU measurements should be reported as (1) Figure 10-8 is a sample graph of utilization values for a

needed in PDSS, especially when the system configurationsiggle CPU resource plotted over time. Similar graphs can be con-
changed, but at least once for each fielded release. structed for the utilization of all other CPUs plus each I/O and

(2) Preparation. memory resource.

(a) This metric requires system computer resources to be identi- (2) As software development proceeds, the measured values for
fied and usage budgets allocated to them. The minimum set ofeach category should be projected for the operational environment.
resources to monitor are central processing units (CPUs), input/For instance, stimulation testing of system functions yields CRU
output (I/0O) channels, storage devices, and memory. values that can be used to project the CRU for functions yet to be

developed.

(g) Actual resource usage (percent of capacity).

56 DA PAM 73-7 « 25 July 1997



Computer Resource Utilization - Central Processing Unit

System: Device CPU: Radar1 (Target) Report Date: 7/9/93
100 — — - —_

H
o

% Utilization

o T T ; T T T T T T ; 7 1
6 7 8 9 10 1 12 13 14 15 16 17 18
Program Month (6/92 - 6/93)

—————

| —=— Actual Utilization
~~~~~~ +--  Target Upper Bound

Projected Utilization

Figure 10-8. Sample computer resource utilization graph

e. Management information. in computing and analyzing the measures. Projections based on the
(1) Resource utilization tends to increase during system develop-development test environment are acceptable up to a certain point,
ment. Therefore, adequate planning is essential to ensure that thbut testing on the target hardware should take place as early as
software operation does not put undue demands on the target hardpossible.
ware capabilities. This metric tracks utilization over time to make (9) Growth in resource utilization is often not predictably linear.
sure that sufficient capacity remains for future growth and for peri- Also, utilization may not always be directly controllable by the
ods of high stress loading. developer. For example, upgrading commercial NDI software to
(2) This metric can be applied to a system architecture which isnewer releases may reduce the resources available to application
distributed or centralized. programs due to enhancements added by the vendor. Incremental
(3) When target upper bounds are approached or exceeded, ievelopments or _other management actions_ that defer requirements
may be necessary to change hardware, change software, reallocafould take this into account when preparing resource budgets.
requirements, or raise the target upper bounds. The last option (10) Utilization problems in CPU and memory are often observed
should not be pursued unless the original target upper bound wa@s “ deadlocks,™ crashes,™ high traffic,” and “ slow response.”
well below the usable capacity of the resource. (11) CRU relation with other metrics is summarized in table
(4) A target upper bound above 90 percent is usually too high to10-2.
provide sufficient early warning of potential resource overload.
(5) CRU reporting may reveal under-utilized computer resources. Table 10-2
Ungxpe_ctedly Iow_utlllzatlon v_alue_s may be a res_ult of initial over- =gy relation with other metrics
estimation, reduction of functionality due to requirements changes,
reallocation of functions to other computer resources during design
and implementation, or measurements taken at less than peak loadost
conditions.

Metric Relation

Potential cost overruns due to additional hard-
ware, software redesign, etc.

(6) The developer should be tracking or projecting overall sys- Schedule
tem-level performance using measures such as messages per hour,
transactions per minute, or targets per engagement. These measurg8&duirements
should also be taken when the system is operated in accordanciaceability
with the OMS/MP. If the system is not meeting these system-level o

. . quwements
requirements, CRU of the various computer resource componentsap;jity
should be examined to determine where the performance bottleneckgesign stability
are. Fault profile

(7) Alleviating one resource bottleneck sometimes exposRgiability

Potential schedule slips due to redesign or real-
location.

Have all requirements been implemented in the
code? What is the utilization impact of those that
have not?

Utilization values change as requirements/code
change.

Utilization values change as code changes.
Over-utilization can lead to serious faults.
Over-utilization can lead to system failures.

others. When the first problem is remedied, the device’s throughput
may improve to such an extent that previously untaxed resources ¢ Tailoring.

become overloaded. . _ (1) The recommended CRU reporting frequency can be modified
(8) In instances where the development testing and target envitom monthly to occur less often; perhaps only at specified points,
ronments differ in types and/or capacities, caution should be takenyimonthly or quarterly. However, CRU is difficult to correct after

DA PAM 73-7 « 25 July 1997 57



thresholds have been exceeded and early warning through CE may (2) The process maturity level determined as a result of the
be beneficial. assessment.
(2) CRU could also be tracked for implementation and test re- (3) The date the level was assigned.
sources in the software development environment that are not part (4) The type of assessment performed, such as developer's self-
of the deliverable system, such as workstation utilization or availa- assessment, acquirer's assessment of the developer, or independent
bility. This will ensure developers are getting the computer re- third party assessment.
sources to perform their jobs. (5) For each KPA that was examined record the item’s assess-
(3) CRU metric data gathering can be a part of the regular oper-ment outcome (for example, satisfactory, unsatisfactory, or not
ating system functions, or passive monitors may be implemented.reviewed).
(4) Tailoring may be appropriate for situations when dynamic
allocation, virtual memory, parallel processing, multitasking, or mul-

tiuser-based features are employed. Table 10-3 _—

(5) The developer can collect additional metrics when and where C2PaPility maturity model definitions
appropriate. These may include tracking the amount of swapping,At this process An organization demonstrates adequate capability in
paging, and network utilization as well as response time. maturity level these key process areas

. . . . 1 (initial

10-10. SOft.Ware engineering environment (SEE) metric .2 érepeaztable) Software configuration management

a. DescriptionThe software engineering environment metric Software quality assurance
provides a rating of the developer’s application of software en- Software subcontract management
gineering principles. Examples of these principles are the use of Software project tracking and oversight
structured design techniques, the extent of tool usage, and the use of Software project planning
requirements management techniques. If practical, assessments can Requirements management
also be applied to materiel developer personnel or the program3 (defined) Peer reviews
manager’s matrix support staff to assess their capabilities with Intergroup coordination

Software product engineering
Integrated software management
Training program

Organization process definition

respect to developing software. Rating of software developers
should be performed by a qualified independent group. Performing a
software engineering environment assessment is described in reports

Carnegie Mellon University/Software Engineering Institute (CMU/ Organization process focus
SEl) —-87-TR-23 and CMU/SEI-93-TR-24. The acquirer is respon-4 (managed) Quality management
sible for ensuring that the proper methodology is used during the Process measurement and analysis
assessment of software process maturity. 5 (optimizing) Process change management
b. Application. Technology inr_lovation
(1) Data collection and reportingAn assessment should occur Defect prevention

whenever a software developer is brought onto a program. Reassess

any previously identified risks at major milestones to monitor im-  d. Presentation and analysiSimple tabular presentations are
provements in the developer’s software engineering procegsally adequate to easily determine a developer's past and current
maturity. process maturity level(s), KPAs that need improvement and those

(2) Preparation. areas in which the developer demonstrates strength.

(@) The SEE metric uses the Software Engineering Institute’s e. Management information.

(SEI's) capability maturity model (CMM) to measure a developer's (1) The software engineering environment rating provides a con-
efforts in identifying and improving software process maturity indi- sistent measure of the capability of a developer to use modern
cators. The CMM provides an organized strategy for process im-software engineering techniques in their development process, and
provement in stages. The stages are an evolutionary path, in thagherefore their capability to instill such principles and characteristics
improvements at each stage form the foundations for the next stagein their products. The basic assumption to this approach is that a
Information on an organization’s current process is gathered prima-quality process results in a quality product. Other metrics and evalu-
rily by means of questionnaires. ation techniques should be used to examine product quality.

(b) The SEI model outlines five levels of process maturity. Each  (2) Although software engineers and managers often know their
level, except level 1, is composed of constituent parts. Each levelproblems in great detalil, they often disagree on which improvements
focuses attention on a different set of process attributes, also calleGre most important. The SEE metric’'s use of standard CMM ques-
key process areas. Each key process area (KPA) consists of numetionnaires allows engineers and managers to focus on a limited set
ous key practices, that when addressed collectively, accomplish theyf key processes and work aggressively toward implementing them,
goals of the KPA. Some of the key practices are selected as keyather than being overwhelmed by the total process.
indicators of whether the goals of a key process area are accom- (3) The SEE rating assists the acquirer in identifying and narrow-
plished. Questions in the CMM questionnaires are based on theséng risk to specific areas generally accepted to have an affect on

key indicators. effective software production. The PM should use the SEE metric to
(c) Have an assessment team follow the methodology outlined infocus on determining developer capabilities and to gauge the ability
CMU/SEI-93-TR-24, which includes the following: and willingness of the developer to improve in weak areas over
1. Collect questionnaire data from developer. time, not just on selecting one developer over another.
2. Conduct follow-up visits to answer further questions, observe (4) An assessment often reveals that a developer is proficient in
tools, and so forth. KPAs from one or more CMM level higher than the rating number

3. Compile the findings from the previous two steps to identify assigned. For that reason, more information than the maturity level
software process strengths and weaknesses in key process areasumber is relevant to appraising actual capability.

4. Calculate the developer's overall process maturity level. A (5) SEE assessments conducted by an SEI trained team are desir-
particular level is achieved when findings indicate all key process able. However, acquirers are encouraged to train their staff how to
areas for that level and every level below it are fully satisfied. Table determine software development capability and to perform informal
10-3 shows the CMM'’s allocation of KPAs to maturity levels. assessments themselves.

c. Data definitions.Data for the SEE metric comes from the (6) The software engineering environment rating can be used by
findings of a process maturity assessment. For each assessmendevelopers to find and improve weaknesses in their software devel-
collect— opment process on their own.

(1) Developer name or other identification. (7) Be aware that the SEE metric reflects current practices only

58 DA PAM 73-7 « 25 July 1997



at the time of the assessment for the particular organization exam- (f) The primary measure collected in the requirements traceability
ined. Changes in a developer’s corporate environment, managemenhetric is the account of requirements successfully traced from one
philosophy or other factors may lead to circumstances that detrimen{evel to another. To facilitate this calculation a software require-
tally affect KPAs over time. Therefore, occasional informal re- ments traceability matrix (SRTM) can be used to collect and organ-
examination of KPAs previously judged satisfactory may Rge the summary data described in the previous steps. The SRTM
appropriate. . o should contain enough information to allow assessment of the rela-
(8) A higher SEE rating should have a positive impact on all tionship between various levels of requirements and the require-
other metrics. ments to their design and test cases. An example of a SRTM is

f. Tailoring. o ) I
. . . shown in figure 10-9. The SRTM identifies the document(s) se-
(1) After an initial SEE evaluation, assessments can be tailored Oected for tracing at each level in columns and their common re-

focus primarily on risk areas uncovered in previous assessments. " ; : .
p y on . p o : guirements in rows representing the links from top-level system
(2) After an initial rating, a developer should periodically review

progress in the key process areas that were lacking in the priOI;equirements to detailed software requirements. In this format, iden-
evaluation. Reporting at each major milestone is only beneficial for tifying units Wh'C_h represen_t a required system function should be
long duration programs since it takes time to implement changes@PParent. Question marks in the sample SRTM mean that tracing
and see improvement in corporate policy and procedure, and ulti-N@s not yet occurred. The degree of completion of the SRTM

mately software products. depends upon the current stage of the software life cycle and which
documents are available for review. Also note that at each level of
10-11. Requirements traceability metric the trace, a single requirement can be traced to multiple lower level

a. Description.The requirements traceability metric measures the requirements.
level to which software products have implemented requirements . paia definitions.

allocated from higher level specifications. Software products include .
specifications, software design, code, and test cases. (1) For each system or software documentation level tracked to

b. Application another, collect—

(1) Data collection and reportingTracing software requirements (a) Names of the two documents assessed.
begins with the first specification produced in response to a defined (b) Number of system/software requirements in the" traced from”
mission requirement for which an automated information solution is document.
foreseen and continues thrOUghOUt the life of the program. The (C) Number of requirements in “ traced from” document success-
recommended reporting frequency for this metric is at major mile- fully traced to the “ traced to” document.

stones durl_ng system or software development, or at major software (d) Number of requirements in * traced from” document that
release points during PDSS.

(2) Preparation could not be traced to the “ traced to” document.

(a) The requirements traceability metric is an accounting of how  (€) If @ backward trace is also performed between the two docu-
many requirements from one document are addressed in other docuMents, record the number of requirements in the “ traced to” docu-
ments. This is typically from higher to lower levels of specification ment that were successfully traced back to the* from document,”
and corresponds to the evolution of requirements and design deand the number of requirements in the * traced to” document that
picted on the left side of figure 1-2. Requirements are also trackedcould not be successfully traced back to the “ from document.”
to the tests that verify them; the right side of figure 1-2. In order to  (2) It is suggested that software requirements be reported by
do this, the hierarchy of technical documentation must be deter-individual CSCI.
mined, and the relationship between the requirements in the differ- (3) The relationships in table 10-5 are recommended for tracking
ent documents evaluated. with this metric

(b) Top-level requirements for DOD systems are defined in the .' - .
mission needs statement (MNS). This original statement of user d- Presentation and analysibigure 10-10 is an example graph
requirements is expanded in subsequent documents. The Speciﬁgeco_mmended for the requirements traceablllty_ metric. The chart
documentation set developed for a software-intensive system is taiProvides a summary of a CSCI's software requirements traced for-
lored to its acquisition category and other program-specific issues.ward to lower levels of design and code and backward to system
Table 10-4 is a representative matrix of different levels of require- requirements.
ments to the typical documents in which they are specified, elabo- e. Management information.
rated or verified. The list refers only to documents described1) Software test management procedures dictate that software
elsewhere in this pamphlet; other applicable documentation may b&equirements should be traced to their individual qualification test

SUbStitUt?d or addgd. f h level should b ked with cases. Recording this trace provides visibility to ensure that software
(c) At least one document from each level should be tracked wit requirements are adequately tested.

the requirements traceability metric. The important point is that a . S - .
logical series of software requirements can be followed from top- . (2) Requirements traceability aids in determining the operational

level operational requirements down to code and test cases. Thdmpact of software problems. Failed requirements can be tracked
term “ software requirements” for this metric includes any software Pack to specific mission needs.
interface requirements. (3) Due to the detailed nature of the requirements traceability
(d) The act of tracing means determining whether the require- metric, collecting this data is most cost effective if it is a normal
ments in one document are addressed in another. Usually the trace jsroduct of software development or a V&V effort. The consolidated
forward, from higher to lower level of detail. The document with software standards identified in chapter 2 and table 10-5 request
the lower level of detail was usually based on the higher level forward and/or backward traces be provided as part of many of their
document. The objective is to verify that all higher level require- software documentation products. The SRTM should be part of the
ments are allocated to lower levels and that lower levels do not addjeveloper's deliverable technical data package.
any new requirements. The latter is often more easily accomplished
by reversing trace direction from lower to higher levels, also called
a backward trace.
(e) The relationships in table 10-5, or their equivalents, are rec-
ommended for tracking with this metric.

“

(4) The SRTM is normally prepared by the software developer,
but should also be verified by an independent organization, such as
an IV&V agent or LCSEC/PDSS personnel prior to software
transition.

DA PAM 73-7 « 25 July 1997 59



Table 10-4
Sample requirements level to technical document correlation

This type of requirement Is typically elaborated/implemented in And verified by tests described in

User/mission Mission Needs Statement (MNS) Test and Evaluation Master Plan (TEMP), System
Operational Requirements Document (ORD) Evaluation Plan (SEP)

User/system Users’ Functional Description (UFD) TEMP, SEP
Operational Concept Description (OCD)

System System/Subsystem Specification (SSS) Detailed Test Plan (DTP), Software Test Plan
Interface Requirements Specification (IRS) 1 (STP)

Software design Software Design Description (SDD), Software Development Files (SDFs)

Interface Design Description (IDD),
Database Design Description (DBDD)

Unit design SDD, IDD, DBDD, Software Product Specification SDFs
(SPS) 2

Notes:

1|RS and STP apply when the system is an information system.

2 SPS contains or references the code and data.

3 Software documentation based on MIL-STD498/IEEE Std P1498/EIA IS 640.
4 All documents not applicable to all programs.

Table 10-5

Recommended items for requirements traceability metric tracking

From To Backward trace also
User requirements (mission) (MNS/ORD) User requirements (system) (UFD/OCD) Yes
User requirements (system) (UFD/OCD) System requirements (SSS) Yes
System requirements (SSS) Software requirements (SRS, IRS) Yes
Software requirements (SRS, IRS) Software design high level (SDD) 1 Optional
Software requirements (SRS, IRS) Software design detailed (SDD) 2 Optional
Software requirements (SRS, IRS) Code (SPS) Optional
Software requirements (SRS, IRS) Software qualification test cases Optional
Notes:

1 CcsCl level design.
2 Unit level design.

(5) The PM and user representative may also want to evaluate théhe percentage of SRS requirements which need to be traced to
SRTM. This evaluation can be intensive in time and effort but worth detailed design before start of coding. Required levels of traceability
the cost when problems or discrepancies are discovered and corshould be based on the degree of risk assumed for requirements that
rected early. are not traceable to this point. Individual thresholds are system

(6) When evaluating the SRTM, consider the criticality of the gpecific.
requirement to the system user and the criticality of the resultant (10) During PDSS, if a function is modified, the SRTM can be

software function to system operation. A formal method may be sed to focus rearession testing on particular CSCIs/units
used to identify requirements which address key user operations of! 9 9 P :

critical system functions. Another method is to identify those units ~ (11) This metric does not provide information on whether tests

which appear most often in the SRTM. These units represent cruciahave been executed or report test success or failure of specific

basic software function because they are needed for multiple systenfequirements. The SRTM can be tailored to include test result status

requirements and functions. These units can be developed earlief desired.

and be given increased test scrutiny. (12) The relation of requirements traceability with other metrics
(7) Incremental or evolutionary acquisition strategies, such asis summarized in table 10-6.

rapid prototyping , where all requirements are not known in advance ¢ Tailoring.

or specified to the same degree of detail, require the trace of re- . . . .
quirements be an iterative process. As new requirements add more (1) Implementing the requirements traceability metric in the man-

functionality to the system, the SRTM is revised and augmented.ner described above [s complicated by non-.hierarchical implementa-. .
(8) The SRTM can be a valuable management support tool at!ions, such as object-oriented techniques. Program-specific
system requirement, design or other joint reviews. It may also indi- implementation guidance should be established for tracing and
cate those areas of software requirements or design which have ndgtounting requirements using object-oriented requirements analysis
been properly defined. and design methods. As a minimum, the percent traceable from the

(9) The PM should establish criteria for requirements traceability SRS to code and SRS to test cases should be provided.
thresholds for proceeding from one activity to the next, for example,

60 DA PAM 73-7 « 25 July 1997



Software/ Software/
Mission | Oper. System Interface Interface Software
Need Concept | Regqt. Reqt. Design CSCI Unit Design Code Test Case
MNS (016])) SSS SRS/IRS SDD/IDD CSCI#Unit#, Function, STD Par.
Paragraph Number ID # Function SLOC Num ber
3.0 3.1 3.1 SRS 3.1.2 SDD 3.1.7 01 01004, Compare, | 3.11 to
Compare 141-218 3.12.4
3.1.3 SRS 3.14.2 SDD 3.10.6 01 01013, Add Add, 3.10.1 to
IRS 3.17.1 IDD 3.11.2 417-509 3.12
3.1.6 SRS 3.22.2, SDD 3.15.3, 03 03009, Sort Sort, 3.15.2 to
3.223 3.16.7 738-822 3.15.8
3.2 3.25 SRS 3.2.16 SDD 3.2.2 01 01006, Send Send, 3.27
418-492
4.0 4.1 4.1 SRS 4.1.2 SDD 4.1.3, 01 01003, Divide Divide, 4.1.3,
4.1.9 01004, 161-248 4.1.8,
Increase Increase, 4.2.9
01011, Relate 361-438
Relate,
861-948
4.1 4.1.5 SRS 4.1.5 SDD 4.1.8 01 01007, Repeat Repeat, 4.1.5
IRS 4.1.9 IDD 4.11.2 117-209
4.2 4.2.2 SRS 4.2.5 SDD 4.24 02 02013, Expand | Expand, 4.2.7,
IRS 4.2.9, IDD4.211 02014, Amplity | 738-822 4.2.13,
4.2.11 Amplify, 4.2.14,
1061-1148 | 4.2.16
4.3 4.33 SRS 4.35, SDD 4.33 04 04003, Equate Equate, 4.33
4.3.8 418-492
4.3 4.33 SRS 4.3.6 SDD 4.3.9, 04 ? ? ?
4.3.11
4.3 4.3.4 IRS 4.3.12, IDD 4.3.17, 03 03016, Total Total, 4.3.33,
4.3.17 4.3.19 03019, Append | 1461-1548 | 4.3.40,
03022, Match Append, 4.3.41,
1761-1838 | 4.3.45
Match,
2161-224
4.4 4.4.1 SRS 4.4.6 SDD 4.44 01 01001, Relay Relay, 4.4.6,
2761-2848 | 4.4.9

Figure 10-9. Example of a software requirements traceability matrix

DA PAM 73-7 « 25 July 1997

61



Software Requirements Traceability

System: SMAS  CSCI: TRACK  Report Date: 4/2/94
100
B0 N 1
- —
8 N =
© M =
F 60 =
2 . \ E
& =
2 40 ; —
) N =
® =
20 ; -
0 \ \ \ \ =
2 4 6 8 10 12
Program Month (8/93 - 3/94)
[ ] SRstosss SRS to CSCI Design

= SRS to Unit Design
SRS to Test Cases

i

SRS to Code

Figure 10-10. Sample requirements traceability graph

(2) The recommended level of reporting software requirements detailed design requirements. This can be accomplished, for exam-
traceability data is at the CSCI level. Lower levels of reporting, ple, by making a list of all the di_stir_lct units which appear in the"
such as against specific software units, may be appropriate to focugode” column of the SRTM. The list is then compared with the total

on risk areas.

Table 10-6

Requirements traceability relation with other metrics

Metric Relation

CRU As more requirements are implemented in the
design and code, utilization values will increase.
Are any target upper bounds being approached
or capacities exceeded?

SEE A developer with a higher maturity level rating

Requirements
stability

Design stability

Breadth of testing

Fault profile

Reliability

can be expected to have an institutionalized
process to ensure all requirements are imple-
mented and tested.

Requirement changes should be reflected in the
documented design and code. Have changes
been traced to design, code, and test cases?
Requirements which are not implemented (or
traced) to design description documents (SDD,
IDD, and DBDD) prior to detailed design may en-
tail design changes when they are later imple-
mented.

Have test cases been developed for each re-
quirement?

A large number of software problem/change
reports in the requirements category may indi-
cate inadequate traceability of requirements.
Many software “ failures” are actually the result of
system or user requirements which are not found
or implemented improperly in the final software
code.

(3) It can be worthwhile to perform additional backward traces
on items marked optional in table 10-5, such as from code togetected and cumulative total resolved).

62

list of units in the detailed design documentation or alternate repre-
sentation, such as automated flow charts. Any unit which appears in
the “ code” column, but is not found in the detailed design, may not

support a requirement. The actual functions and need for these units
should be investigated.

(4) The SRTM approach can be applied to other types of require-
ments traces as well as software. The baseline correlation matrix
described in DA Pam 73-5, for example, documents major system
requirements, operational requirements (MNS, ORD), COICs and
system measures of effectiveness and performance to ensure re-
quirements remain consistent and is used as a tool in developing
additional operational issues (AOIs) and their associated measures.

10-12. Requirements stability metric

a. Description. The requirements stability metric indicates the
degree to which changes in the software requirements or changes in
the developer’s understanding of the requirements are affecting the
development effort. It also allows for determining the cause and
source of requirements changes.

b. Application.

(1) Data collection and reportingCollection can begin with ap-
proval of the mission need statement. Collection begins in earnest
during the system requirements analysis activity and continues for
the lifetime of the system. The recommended reporting frequency
for this metric is monthly.

(2) Preparation.Mechanisms to perform and report product eval-
uations, a corrective action system and configuration management
procedures need to be in place in order to collect the data defined
below. In order to monitor the source of requirements changes, it is
recommended that some data items be collected separately for user
and developer categories.

c. Data definitions.Collect for each CSCl—

(1) Software requirements discrepancy status (cumulative total

DA PAM 73-7 « 25 July 1997



(2) Total number of source lines of code (SLOC). early on in cases where prototyping is used. At some point, howev-

(3) Total number of SRS requirements. er, the requirements should be firm so that only design and imple-
(4) Number of SRS requirements added due to approved en-mentation issues will cause further changes to the specifications.
gineering change proposals - software (ECP-Ss). (3) The plot of open discrepancies can be expected to spike

: o upward at each review and to diminish thereafter as the discrepan-
(5) Number of SRS requirements modified - due to approved cies are closed. High requirements stability is indicated when the

ECP-Ss. . . . . . :
&) Numb ¢ SRS . ts deleted due t cumulative discrepancies curve levels off with most discrepancies
EC(:P)Ssum er o requirements delete ue to  approvibing reached closure.

(4) For each engineering change, the amount of software affected
(7) Number of SLOC affected by approved ECP-Ss (proposed byshould be reported in order to track the degree to which ECP-Ss

user/proposed by developer). increase the difficulty of the development effort. Only those ECP-Ss
(8) Number of software units affected by approved ECP-Ss approved by the configuration control board should be tracked.

(proposed by user/proposed by developer). (5) It is recognized that the amount of SLOC is somewhat de-
(9) Number of ECP-Ss generated from requirements changesndent on both the application language as well as programmer

(proposed by the user/proposed by the developer). style. The key is to watch for significant changes to SLOC due to

d. Presentation and analysidigure 10-11 shows cumulative requirements changes. . o _ ”
requirements discrepancy counts, detected and closed, over time. (6) The PM should establish criteria for requirements stability

Figure 10-12 shows the number of ECP-Ss submitted each reportinghrésholds for proceeding from one activity to the next. For exam-
period by both the user and the developer. ple, after joint technical review of the software requirements, the

requirements should be stable enough to allow the design to be
converted into code.

(7) The PM should also establish criteria for time to close open
quirements discrepancies. Cost and schedule impacts may

e. Management information.

(1) When a program begins, the details of its operation and de-
sign are rarely complete, so it is normal to experience changes ir.,
the specifications as the requirements become better defined ovef,

time. (No'_[e: Prototyping can help aI_Ieviate this problem, or at Iea_lst (8) Causes of program turbulence can be investigated by looking
cause refinement to happen earlier in development.) When technical; “yequirements stability and design stability together. If design
reviews reveal inconsistencies, discrepancy reports are generatedyapility is low and requirements stability is high, the transfer from
Modifying the design or the requirements to alleviate a problem gesign to code is not working well. If design stability is high and
results in closing the associated discrepancy report. When a changgequirements stability is low, the transfer from the users to the
is required that increases the scope of the system, an ECP-S igesign activity is not working well. If both design stability and
submitted. requirements stability are low, neither process is working well.
(2) Allowances should be made for lower requirements stability (9) The relation of requirements stability with other metrics is
shown in table 10-7.

Requirements Stability
System Name: SMAS CSCi: TRACK  Report Date: 1/3/93

w
n
o

1

NN
g 8
|
AN
>\

-
4.
[=]

Requirements Discrepancies
2
[=]

@
o
N

T T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 186
Program Month (9/91 -12/92)

! —

|  —=— Cumulative Detected ———— Cumulative Closed 1

Figure 10-11. Sample graph of requirements discrepancies over time

DA PAM 73-7 « 25 July 1997 63

oted when requirements discrepancies remain open after 30 days.

be



Requirements Stability
CSCl: CONTROL-UNIT

System Name: DEVICE

Report Date: 4/5/94

I I
6 7 8 9 10

20
25
P

©

[]

o

g
i10

(]

jo)] I

c

[]
K
O

557

=
i

[ 7 Zi % E % E %
0 B \ f \ % \ \
11 12 13 14 15 16

Program Month (3/93 - 3/94)

I l
17 18

[ ] UserChanges

/) Developer Changes

Figure 10-12. Sample graph of ECP-Ss over time

Table 10-7

Requirements stability relation with other metrics

Metric

Relation

Cost, Schedule

CRU

Requirements
traceability

Design stability

Breadth of testing

Development
progress

Cost and schedule will be adversely affected by
an unusually large number of requirements
changes. The later in the life cycle requirements
changes occur, the greater the severity.
Changes to functionality may require more re-
sources or cause allocations to be redistributed.
Have requirements changes increased utilization
measures?

Ensure that requirements changes are traced to
design, code, and test cases. Requirements that
trace to many design elements will take more
time and effort to modify and test.

As requirements change, software units are mod-
ified, added, and deleted. Expect design “ insta-
bility” as a result of changing requirements. De-
sign stability not changing when requirements
are changing indicates a problem.

Test cases should be run for changed/new re-
quirements. Does breadth of testing data reflect
the changed/new requirements?

Changing requirements may slow development
progress.

f. Tailoring.

(1) Another useful display for this metric is the effect of require-

changes made only to software requirements that implement priority
1, 2, and 3 user requirements.

10-13. Design stability metric

a. Description.This metric is composed of two measures. The
design stability measure tracks changes made to the design of the
software. The design progress measure shows how the completeness
of the design is advancing over time and provides a context for
viewing the design stability measure in relation to the total projected
design.

b. Application.

(1) Data collection and reportingBegin tracking as code is
entered into configuration management and continue for each ver-
sion until completion. The recommended reporting frequency for
this metric is monthly.

(2) Preparation.Specific preparation steps are not needed for this
metric.

c. Data definitionsFor each CSCI and each delivery/design ver-
sion collect—

(1) Date planned for design/delivery version completion.

(2) M = Number of units in current delivery/design.

(3) F¢c = Number of units in current delivery/design that include
design related changes from previous delivery.

(4) F 3 = Number of units in current delivery/design that are
additions to previous delivery.

(5) Fg = Number of units in previous delivery/design that have

ments changes on the code. This can be seen by plotting the percerieen deleted.
or number, of SLOC changed over time.

(2) Function points could be tracked rather than SLOC.

(3) Requirements stability metric tailoring should consider the
criticality of individual requirements and units. For example, if user

(6) T = Total number of units projected for system.
d. Presentation and analysis.

requirements are prioritized, tailoring might consist of tracking

64

DA PAM 73-7 « 25 July 1997



(1) Plotting the calculated design stability (S) and design prog- to one is not necessarily good unless M is close to the total number
ress (DP) values over time as in figure 10-13 is a recommendedf units required in the system (design progress measure approach-
display. Table 10-8 has the formulas for the two design measuresing one), and the number of changes being counted are relatively

small and diminishing over time. Periods of inactivity could be
Table 108 mistaken for sta_blllty. _
How to compute design stability measures (4) When design changes are being made to the software, the
impact on previously completed testing must be assessed. Tests may

F | Wh . e

ormura ere need to be redone and may require modifications to test data and
S=M=(Fa+Fc+Fgl/M S = design stability measure conditions.
DP = M/T DP = design progress measure

(5) Allowance for exceptional behavior of this metric should be
made for the use of rapid prototyping. Prototyping, while possibly

(2) Although not indicated in figure 10-13, it is possible for causing lower design stability numbers early in the program, should
design stability to be a negative value. This may indicate that every-reduce the number of design changes needed during later stages of
thing previously delivered has been changed and more units havelevelopment.
been added. If the current delivery contains fewer units than the (g) The PM should establish criteria to define what constitutes a
previous one, a negative value |r_1d|cates that the number of units. design change.” A design change implies change to the code for
Qpecific reasons, not a change due to style or coding preferences, or
to add comments.

(7) Be aware that this metric does not measure the extent or

total number of units in the current delivery.
(3) If some units in the current delivery are to be deleted from

the final delivery, it is possible for design progress to be greater . ; . .
than one. y P gn prog g number of changes in a software unit nor the quality of its code.

e. Management information. Other metrics, such as complexity, can contribute to such an evalua-

(1) The design stability measure depicts how much of a softwaretion' This metric also does not identify the specific units that are
delivery, or version, is comprised of pieces reused without modifica- P€ing changed.
tion from the previous delivery or version. The closer this value is (8) The design stability metric can be used in conjunction with
to one, the higher the amount of reuse. the complexity metric to highlight changes to the most complex

(2) The design stability measure should be monitored to deter-units. It can also be used with the requirements metrics to highlight
mine the number and potential impact of design changes, additionschanges to units which support the most critical user requirements.
and deletions on the software configuration. The trend of the meas- (9) If tracking design stability for builds or increments, T will
ure over time indicates the software design is approaching a stablgkely be less than the total number of units projected for the sys-
state when the curve levels off at a value approaching one. INtem™ pyt will reflect the total projected for the build.

?edr?;::gg :;)f ?hgggoﬁgfeagﬁ OISI\(/jerceur(\a/fr,“g:teeggllowmg other charac- (10) The relation of design stability with other metrics is shown

(@) The development progress metric is high. n tablg 1,0_9'

(b) Requirements stability is high. f. Tailoring.

(c) Depth of testing is high. (1) Graphs of T and M over time are also useful. One would

(d) The fault profile curve has leveled off and most software expect the projected number of units at completion (T) not to vary
problem/change reports have been closed. significantly from reporting period to reporting period with the ex-

(3) The higher the design stability measure, the better te@ption of occasional replanning actions. Likewise, the number of
chances of a stable software configuration. However, a value closeunits in each successive delivery would not be expected to fluctuate
widely or to steadily decrease.

DA PAM 73-7 « 25 July 1997 65



Calculated Value

Design Stability
CSCIl: CARD3

System Name: SMAS

Report Date: 7/2/92

T T T T T
6 7 8 9 10 11

Program Month (6/91 - 6/92)

13 14 15 16 17 18

I
i

—+—— Design Progress |
— —a—~  Design Stability

T
|

Figure 10-13. Sample design stability and design progress graph

(2) Defining any modification of code as a design change, re- Additionally, a highly complex unit is more likely to contain em-
gardless of reason, may be easier to implement than monitoring onlypedded errors than a unit of lower complexity. The likelihood of
design related changes, depending on the configuration managemertroducing errors when making code changes is higher in complex

tools being used.

Table 10-9

Design stability relation with other metrics

Metric

Relation

Cost, Schedule
CRU

Requirements
traceability

Complexity

Breadth of testing
Depth of testing

Development
progress

Cost and Schedule will be adversely affected by
unusually large numbers of design changes.
What is the impact on resource utilization of ad-
ding/modifying software units? Are target upper
bounds being approached or exceeded?
Everything implemented in the code should be
traceable back to the documented design of a
unit, CSCI, and higher level specifications. Also,
have all requirements been implemented in the
code?

Compute the complexity values for new and
modified units. A steady growth in the proportion
of units with high complexity could indicate insuf-
ficient attention to applying good design and cod-
ing practices.

If changes are a result of “ bug” fixes run regres-
sion tests to verify changes.

Obtain depth of testing data for new and modified
units.

Changing design may slow development prog-
ress.

10-14. Complexity metric
a. Description.The complexity metric provides a means to meas- (operators). The measures are calculated with the formulas in table

ure and evaluate the structure of software units. Software that is

more complex is harder to understand, test adequately and maintain.

66

units. The Army complexity metric allows selection from five dif-
ferent measures, as shown in table 10-10. Each measure captures a
different aspect of complexity.

b. Application.

(1) Data collection and reportingBegin collecting McCabe’s
cyclomatic complexity during software design. Begin collecting
other complexity measures as units are placed under the developer’'s
configuration control. Recompute the complexity measures for units
after they are modified during development and PDSS. The recom-
mended reporting frequency for this metric is monthly.

(2) Preparation.

(a) Specific preparation steps are not needed for this metric.
Source code or program design language is the material examined
for determining complexity. Using automated tools to compute the
measures accurately and consistently is strongly recommended. A
brief discussion of each complexity measure follows.

(b) McCabe’s cyclomatic complexity is based on graph theory. It
is the number of independent control paths through a unit, from
entry point to exit point (also called basis paths). The lower the
number of independent paths means fewer tests are needed to exer-
cise all possible control sequences in that piece of software.
Cyclomatic complexity is calculated with the formula in table
10-11. An illustration of a flow graph and its cyclomatic complexity
derivation is shown in figure 10-14.

(c) The three Halstead measures included in the complexity met-
ric are expressions of program size based on the data manipulated in
a program (operands) and the operations performed with the data

DA PAM 73-7 « 25 July 1997



10-12. The larger a unit's size, more effort is needed to understandTable 10-11

test, and maintain it. How to compute cyclomatic complexity
Formula Where
Table 10-10 C=E-N+2P C = the cyclomatic complexity
Measures comprising the complexity metric E = # of edges (program flows between nodes;
- - i.e., branches)
Measure Quantifies the attribute(s) of N = # of nodes (groups of sequential program
McCabe'’s Relative degree of effort to test or maintain a statements) )
cyclomatic com- software unit (based on the number of ways con- P = # of connected components (number of dis-
plexity trol could flow through the unit) connected parts on a flow graph)
Halstead's length, Relative degree of effort to test or maintain a
vocabulary and software unit (based on the amount of data and
volume number of operations performed on them)
Control flow thUnstl_’tuctured changes in control flow through Table 10-12
. 1€ uni How to compute Halstead size measures
Source lines of Size
code (SLOC) Formula Where
Percent comment  Understandability and maintainability — —
lines v=ni+ny v = program vocabulary

n 1 = # distinct operators
n 2 = # distinct operands
L=N1+N> L = program length
N 1 = total # of occurrences of the operators
N o = total # occurrences of the operands
V = L(log 2v) V = program volume

McCabe’'s Cyclomatic

Complexity

C=E -N+ (2P)
=10-8+ (2*1)
=4

LEGEND

(O -node (N)
@ - decision point
—>» - edge (E)

P - connected
components

Figure 10-14. Example flow graph and cyclomatic complexity

(d) The control flow measure counts the number of times control (f) The percent comment lines measure shows the relative
paths cross in a unit. Control path crossings are also referred to as amount of explanatory material in a program compared to its size, in
knots.” For example, a conditional GOTO statement embeddets. For the purposes of computation, blank lines are not consid-
within a standard structured control flow construct (for example, ered comment lines. The percent comment lines for a software unit
WHILE, UNTIL, CASE) that sends control out of the construct is calculated as (C/ T) * 100, where C = number of comment lines
improperly would cause a knot to occur in a unit’'s flow graph. The and T = total number of non-blank lines in the unit.
control flow value for figure 10-14 is zero. c. Data definitionsThe data to collect for this metric depends on

(e) The SLOC size measure is the number of lines of code (LOC)which of the five complexity measures are desired. The measures
in a unit. Lines of code are defined as non-comment, non-blank,are calculated at the unit level, where a unit is defined as the
executable, and data statements. Source LOC refers to code which smallest piece of testable code. For each software unit in each CSCI
written and maintained by programmers. collect—

DA PAM 73-7 « 25 July 1997 67



(1) Programming language the unit is written in. simpler software (see table 10-13). Figure 10-15 is a histogram of a
(2) For the McCabe’s cyclomatic complexity measure, the calcu- CSCI's units distributed by cyclomatic complexity value.
lated value of cyclomatic complexity.
(3) For the Halstead measures, the calculated values of program
vocabulary, program length, and program volume. Table 10-13 = .
(4) For the control flow measure, the number of control path 1resholds to minimize complexity

crossings. Measure Suggested threshold per unit
(5) For the SLOC measure, th_e number of lines of code. McCabe’s cyclomatic complexity < 10 for source code
(6) For the percent comment lines measure, the calculated per- < 7 for PDL
centage of comment lines. Halstead’s volume < 3200
d. Presentation and analysRecommended displays for this Control flow =0
metric allow comparing a program’s complexity with threshold val- SLOC < 288/
2 (]

ues generally accepted as distinguishing complex software fromPercent comment lines

McCabe's Cyclomatic Complexity
System: DEVICE  CSCI: STATION1 Report Date: 6/19/92

50

N
o
|
{

[N
o
|
;

N
o
|
;

[

Number of Units

-
o
|
;

[

l
I

0 ‘ ‘ 4 072707777 zzzizn. szzzez

0-5 6-10 1115 16-20 21-25 26-30 31-35 >35
Cyclomatic Complexity Value

CSClI has 105 units total

Figure 10-15. Sample cyclomatic complexity display

e. Management information. PDL during the design activity. The suggested cyclomatic complex-

(1) Automated tools are available for many programming lan- ity threshold for PDL is lower than the source code threshold to
guages and software development environments and should be usedllow for expected growth during unit implementation (see table
to assist in computing the complexity measures. 10-13).

(2) This metric applies throughout the software life cycle. Es- (4) Complexity measures should be generated for each unit in the
tablishing a complexity threshold during development stimulates system. They can be grouped for display in a number of ways (for
structured programming techniques and limits the number of critical example, by CSCI, by individual unit, and so forth). Examining
paths in a program during design and unit implementation. Com-complexity at various levels can provide indications of potential
plexity is used during software testing to identify basis paths, define problem areas. These indications give guidance to the developer on
and prioritize the testing effort, and assess the completeness of uniareas where additional concentration is needed. The Government
testing. During PDSS, proposed changes that would substantiallycan use complexity to find areas where test efforts should focus,
increase complexity should be examined closely, as they could alssuch as performing code walk-throughs, more comprehensive unit
increase testing effort and decrease maintainability. level testing, or stress testing. While the majority of units in figure

(3) It is recommended that this metric be used as soon as it isl0-15 have values less than or equal to ten, it can be seen that
practical. It is highly desirable to limit the inherent complexity of Several units have well exceeded this suggested threshold. These
software during design and as code is being developed. Althoughunits should be examined closely through testing and analysis.
the metric provides valuable information, it should not be relied (5) There are several embedded assumptions and known
upon as the sole metric to judge the quality of the design’s imple-weaknesses in the complexity measures. For example, in computing
mentation. Chapter 5 lists test and CE activities used in conjunctionMcCabe’s cyclomatic complexity, there is no differentiation be-
with design. Wherever possible, complexity should be computed fortween different kinds of control flows. A CASE statement, which is

68 DA PAM 73-7 « 25 July 1997



easier to use and understand than a corresponding series of condfable 10-14
tional statements, makes a high contribution to cyclomatic complex-Complexity relation with other metrics—Continued

ity. This is counterintuitive considering that the corresponding series petric Relation

of IF...THEN...ELSE statements would be more trouble to test,

modify, and maintain. An exception to the cyclomatic threshold in SEE Organizations with a higher SEE rating generally
table 10-13 may be appropriate for large CASE statements where a develop less complex and easier to maintain
number of independent blocks follow the selection function. Further, Deoth of testin B%?g with hiah complexity reuire more test re-
a million straight line instructions have the same cyclomatic com- P g sources g plexity requ

plexity as a single instruction. Using more than one complexity rayit profiles High cohplexity units may contain more faults.
measure, however, can offset the shortcomings of any singte

measure.

(6) There are many ways of defining and counting lines of code. - Tailoring. )
The fairly simple definition (non-comment, non-blank, executable, (1) Tailoring the amount of data collected for the complexity
and data statements) is intended to apply somewhat equally acros@€tric should consider criticality of individual units. For example, if
the spectrum of procedural languages. The purpose of counting line&/SE" reguirements are prioritized, tailoring might consist of tracking
of code in this metric, as well as in other metrics, is to indicate the CYclomatic complexity only for software units that implement prior-

relative amounts of change in units as they are built and maintained!ty 1 2. and 3 user requirements, while collecting SLOC for all
as well as to indicate unit size.

units.
(7) The percentage of comment lines is a language-dependen (2) SLOC has been retained as a measure of size and complexity
measure. Some self-documenting languages require fewer commentg

ecause of its long history of use and relative ease of computation,

; ..~ @specially for legacy systems. Other size measures, such as function
than an assembly language or a language like FORTRAN. Addition points, may be used, but it is recommended that they supplement
ally, the measure does not address the usefulness or completeness gﬁ
the8coTrr;]ments. lexi lined h . q d (3) The complexity measures in this metric do not address Ada

(8) The complexity measures outlined here are oriented towardsigg o5 such as parallelism, data abstractions (tasks and packages),

procedural programming languages. They are appropriate for Sim”aroverloading, and generics. An Army manager may wish to collect

procedural environments and the large volume of legacy code cur,nq monitor information flow measures in addition to control flow
rently being maintained and enhanced. When applied to artificial je5sures.

intelligence and pure object-oriented languages, however, use care (4) Cohesion and coupling are also valuable as complexity meas-
when interpreting the results. Additional complexity or design struc- a5’ hecause they assess additional software design attributes such
ture measures for languages like Ada (to measure the degree ofs the type of reiationships that exist between logical elements in
encapsulation, for example) can lend further insights into the soft-the same unit, and the relationships that exist between units, respec-

ware structure and their use is encouraged. . tively. These measures are particularly helpful in non-procedural
(9) In cases where units have a high cyclomatic complexigpject-oriented implementations.

(many independent control paths), various techniques exist to help
identify how complexity may be reduced. One method assesses thd0-15. Breadth of testing metric
unit's actual complexity to identify control paths that cannot be a. Description.Breadth of testing addresses the degree to which
tested. This can occur when a program’s data flow and data condivequired functionality has been successfully demonstrated as well as
tions at various decision points preclude control from ever taking the amount of testing that has been performed. This testing can be
those paths. These sections are candidates for rewrite or eliminationdescribed as “ black box” testing, since it is only concerned with
Another method examines essential complexity, a gauge of the us@btaining correct outputs as a result of prescribed inputs.
of standard structured control constructs. These three types of com- b. Application.
plexity and guidance on designing a minimum set of control path (1) Data collection and reportingData collection should begin
tests are discussed in detail in National Bureau of Standards (NBSwhen any formal software testing is performed. The recommended
500-99. reporting frequency for this metric is monthly.
(10) More than one complexity measure should be used because (2) Preparation. Test cases must be developed to demonstrate
each assesses a different complexity attribute (see table 10-10).specific requirements and assigned to test events, and test results
(11) Units planned for reuse should not be overly complex. assessed befqrgldata can be meaningfully gathered for this metric.
(12) Examining complexity trends over time can provide addi- ¢ Data definitions. _
tional useful insights, especially when combined with other metrics (1) For each CSCI, each formal test, and each requirement type
such as design stability or development progress. For example, lat&ollect— .
software code “ patches” may cause the complexity of the patched (8) Type of requirements tested and evaluated (such as SRS, IRS,
unit to exceed an acceptable limit, indicating that the design ratherYFD)- .
than the code should have been changed. Test resources may be(P) Total number of that type of requirement allocated to the
better expended on units that have a relatively high structural com- . .
plexity rather than on units that will reflect a high number of lines ~ (¢) Number of requirements tested with all planned test cases.

d not replace SLOC.

of code tested. (d) Number of requirements successfully demonstrated.
(13) The relation of complexity with other metrics is shown in __ (€) Test identification (for example, UAT, CSCI qualification tes-
table 10—14. ting, system qualification testing, DT, OT).

(f) Requirements priority or criticality, if any.
(2) The types of requirements in table 10-15 are recommended

Table 10-14 _ _ for tracking with this metric.

Complexity relation with other metrics (3) Itis advised to track software requirements (SRS, IRS) tested

Metric Relation and passed through higher test levels beyond software qualification

. tests.

Cost, Schedule Cost and Schedule will be adversely affected by (4) This metric does not track the test progress of individual
exceedingly complex code. . ts. For that it is advised that the “ b f

CRU If RAM target upper bounds are being ap- requirements. For that reason, it is advise at the “ number o
proached or exceeded it may be necessary to requirements” data items (para 10-d@)( a)-( ¢)) be cumulative
optimize the code (generally making it more com- values across tests.
plex).

DA PAM 73-7 « 25 July 1997 69



d. Presentation and analysis.

progress: one is a measure of test coverage, and two are measures of
(1) The requirements counts collected in the breadth of test mettest success as shown by table 10-16.

ric can be used to compute three different measures of testing (2) All three test progress measures can be simultaneously dis-
played over key test events as shown in figure 10-16. It is recom-

mended that test coverage and test success values be displayed as
percentages by multiplying each value by 100.

Table 10-15

Recommended items for breadth of testing metric tracking

This type of requirement

Typically elaborated/implemented in

Prioritize by criticality

User requirements Users’ Functional Description (UFD), Operational Concept Description Yes
(OCD)

System requirements System/Subsystem Specification (SSS), Interface Requirements Optional
Specification (IRS)

Software requirements Software Requirements Specification (SRS), IRS Optional

Table 10-16

How to compute testing progress measures

Measure Formula Where Addresses

Test coverage

Test success

Overall success

R tested/R total

R passed/ R tested

R passed/ R total

R tested = # of requirements tested
R total = total # of requirements

R passed = # of requirements passed

How much of total was tested, without
regard to test success (extent of testing).

How much of what was tested was
successful.

How much of the total was tested and

successful.
A A A A A A N
R:gis RS;'_lrs C:EITS'I%ANL 1PR 1 IPR 2 IPR 3 IPR 4
E
REVIEW REVIEW REVIEW A AN A JAN
TEST, TEST TEST TEST
[ SW PROTOTYPE J BUILD 1 BUILD 2 BUILDS BUILD4
DEV ENG DEL
[ VERS{ON 1 DEVELOPMENT ]
CSCl 1 DEV
[ cscizpev ||
[ csciapgv ]
! CSCy 4 DEV |
[ lescispev |
{ CSCl 6 DEV ]
I cScCl 7 DEV |
[ CSCl 8 DEV |
NOTE: This chart Is for C€scie DEV
example onty. Times may not
be realistic for many programs. A A A A
BUILD 1 BUILD 2 BUILD 3 BUILD 4
L4 | — N ] | u L ] ] 8 ) |
JAN  FEB MAR APR MAY JUN JUL AUG SEP ocT NOV DEC
Today
This schedule shows current status in July. One cannot see how it compares
to the original program schedule.

Figure 10-16. Sample testing progress graph

(3) Be aware that the test success measure is computed for aeach 100 percent. This can occur if all documented requirements
different population of requirements than the other two measures,are not demonstrated through tests, but are qualified by some other
test coverage and overall success. Therefore, test success may Imeans, such as inspection of source code for adequate commentary
higher than test coverage when expressed in percent.

(4) It is possible, in some cases, that test coverage may never e. Management information.

70

for maintenance.

DA PAM 73-7 « 25 July 1997



(1) The breadth of testing metric measures the quantity of testingPDSS. The recommended reporting frequency for this metric is

performed and achieved on documented requirements. While mosimonthly.
requirements are usually functional, the metric also captures the
results of performance, recovery, safety, security, adaptation, and

any other requirements imposed by the acquirer that can be demonlable 10-17
strated through testing.

Breadth of testing relation with other metrics

(2) The overall success measure provides insight into the level ofMetric

Relation

progress made toward implementing the approved requiremedds; schedule
baseline.

(3) Any change in the software requirements baseline requires
recalculating the breadth of testing measures. Requirements
(4) Data should be collected throughout developmental test activ-traceability

ities, if possible. Typically, breadth of testing is collected for CSCI
qualification testing and system-level tests. Requirements

(5) The breadth of testing metric should also be reported incorpo-stanility
rating the results of Government tests, such as DT and OT, particu-
larly if there are requirements that cannot be adequately
demonstrated prior to these system tests.

(6) The PMs should be aware of which software requirements
cannot be tested until late in the testing process, or if a software
function cannot be demonstrated at all prior to deployment.

(7) An innovative aspect of the Army’'s UFD is the option to
assign a priority level to each user requirement to identify the mostComplexity
important requirements to be implemented in the software. The
OCD, SSS, SRS, and IRS outlined in the consolidated software
standards of paragraph 2€2also discuss provisions for assigning
precedence or criticality values to requirements. Data for this metric
may be collected and reported separately for each requirementg it profiles
priority level to provide more detailed visibility into which require-
ments are being tested.

(8) As requirements are added and deleted over time, the populaReliability
tion of total requirements also changes. This can cause the reported

Design stability

Cost and Schedule will be adversely affected by
an unusually large number of problems un-
covered in testing.

During PDSS, the breadth of testing metric
should be used with the requirements traceability
metric to measure the level of regression testing
needed.

Changes in requirements require test cases to be
modified or developed. Previous test results for
changed requirements are no longer valid; tests
should be rerun and breadth of testing recalcu-
lated.

Changes in design driven by derived require-
ments require test cases to be modified or
developed. Previous test results for areas
changed are no longer valid; tests should be re-
run and breadth of testing recalculated.

CSCls and systems comprised of many units
with high cyclomatic or Halstead volume com-
plexities will likely take longer to pass all their al-
located requirements due to the greater number
of test cases needed to adequately demonstrate
the requirements.

As faults are closed, subsequent retesting should
show breadth of testing improving in test suc-
cess.

Low values for breadth of testing at fielding in-
crease the risk of software reliability problems.

breadth of testing measures to fluctuate for reporting periods when
no testing was performed.

(9) When changes are made to requirements or design, previous (2) Preparation. Four different attributes of software structure

test results for those areas are no longer valid. Until retesting ancf@n P& monitored by this metric. Selection of which of the four
re-evaluation of results occurs, the number of requirements testedtributes to track, development of test cases to demonstrate them,

and number of requirements passed reported in breadth of testingssignment of specific tests to test events, and evaluation of test
should drop by the number of requirements to be retested. results need to occur before data can be meaningfully gathered for
(10) Without clear criteria for test success, the breadth of testingthis metric. The four depth attributes and criteria for success are
metric may not be effective, due to the subjectivity in assessinglisted in table 10-18.
whether a requirement has actually been satisfied. (3) As defined in the complexity metric, a path is a logical
(11) The relation of breadth of testing with other metrics is traversal of a unit from an entry point to an exit point, following a
shown in table 10-17. combination of edges and nodes. An edge is a program control flow
f. Tailoring. Depending on how test success criteria are estab-between nodes. Nodes are groups of sequential program statements.
lished, failing only one test case may result in a requirement not (4) The statement attribute pertains to executable statements only.
being successfully demonstrated. If sufficient resources exist, an (5) Each decision point which contains an “ or” statement should

optional way to display breadth of testing is to report the percentagene tested at least once for each of the condition’s logical predicates.
of test cases performed and passed for each individual software c. Data definitions

requirement. This procedure gives managers insight into the amount o )
of testing done on each requirement (assuming multiple test cases (1) For each unitin each CSCI, and each software depth attribute

exist for a requirement). This optional method of data collection and Monitored, collect— _
reporting may be useful for especially critical requirements, but (@) Name of the depth attribute.
impractical for all requirements due to cost considerations. (b) Total number of attribute occurrences.

(c) Number of occurrences executed at least once.
(d) Number of occurrences successfully executed at least once.
(2) It is recommended to track at least paths, statements and

10-16. Depth of testing metric
a. Description.The depth of testing metric measures the amount
of testing achieved on the software architecture. That is, the extent ! . .
and success of testing the possible control and data paths and condPuts with this metric.
tions within the software. This testing is often described as* white d. Presentation and analysis.
box” testing, since there is visibility into how the software is (1) The attribute counts collected in the depth of testing metric
constructed. can be used to compute two measures of testing progress: one is a
b. Application. measure of test coverage, and the other is a measure of test success
(1) Data collection and reportingBegin collecting data at the as shown by table 10-19.
time that a configuration controlled code baseline is available for (2) The recommended display for this metric is a plot of test

unit testing. This metric should also be reported to reflect regressiorlcoverage and overall success for a depth attribute over time, ex-
testing as changes occur in the baseline during development an@ressed in percent, as depicted in figure 10-17.

DA PAM 73-7 « 25 July 1997 71



Table 10-18
Software structure attributes measured by the depth of testing metric

Attribute Success criteria Recommended for
routine tracking

Path Path is successfully executed at least once Yes
Statement Statement is successfully executed at least once Yes
Input Input is successfully tested with at least one legal entry and one illegal entry . 2 Yes
Decision point Decision point is successfully exercised with all classes of legal conditions as well as Optional

one illegal condition 2

Notes:
1 An entry should be selected from every field of every input parameter.
2 Successful test of an illegal entry or illegal condition means unplanned or undesirable results do not occur.

(c) Compute more comprehensive path and statement measures if

Table 10-19 automated tools are available.
How to compute test progress measures for depth attributes

Measure Formula
Table 10-20
Test coverage Number of attribute occurrences tested Depth of testing relation with other metrics
Total number of occurrences of the attribute Metric Relation
1 h
Overall success Number of attribute occurrences passed Cost, Schedule Cost and Schedule will be adversely affected by
Total number of occurrences of the attribute unusually large numbers of problems uncovered
in unit test.
Notes: SEE Organizations with maturity rating of 1 may not
1 Overall success is also termed path measure, statement measure, domain have well-established procedures for 'white-box’
measure and depision point measure for path, statement, input, and decision at- testing.
tributes, respectively. Requirements Changes in requirements or design may lead to
stability, Design modifying code or developing new code. Previ-
stability ous test results for changes are no longer valid;
e. Management information. tests should be rerun and depth of testing recal-
: ; ; ; ; ; culated.
.t(l)f-l;Ee de?tth of tzsnr.]g m.emlc é).mv'?hes Inlfog.matlk?n %n tthe Intiﬁ Complexity Structural testing of a unit with high cyclomatic or
ny o € S0 Ware_ eésign, Inclu ln_g_ € re_a lonship between the Halstead volume complexity will take longer than
paths, statements, inputs, and decision points of the software. one of lesser complexity due to the greater num-
(2) The depth measures discussed here do not assess the“ cor- ber of control and data paths through the unit.
rectness” of design or code. It is expected that unit tests and unit Units of highest complexity should be designated

integration and testing will make use of test cases that demonstrate, . o testing fSrr]ifsa\r,'\%ﬂ?”lgwmgg%t:]h‘;:;’V“e%gégsmzsures may

code is designed properly. These cases should be supplemented by cause breadth measures to be low as well.

other cases to yield coverage and success measures that providgyit profiles Low values of overall success should correlate
satisfactory confidence that unexpected control or data conditions with software errors reported in the fault profiles
will not occur. Software test programs usually require that software metric. _ o
structure is successfully demonstrated only after passing some ‘Reliability Low values for the depth of testing metric in-

realistic’ number of test cases, under both representative and maxiz crease the risk of software reliability problems.

mum stress loads. It is understood that fully exhaustive testing of all
control and data combinations is prohibitive. _ _
(3) Because illegal inputs are used, the domain measure provided0—17- Fault profiles metric

an indication of the robustness of the software design. a. Description.The fault profiles metric is a summary of soft-
ware problem/change report (PCR) data collected by the corrective

(4) Some judgment is required to interpret the domain Measure,ction system as described in chapter 8. This metric provides insight

because it is unlikely that the program will be subjected t0 all i, the’ number and type of deficiencies in the current software
possible input streams. However, the domain measure is importanjaseline, as well as the developer's ability to fix known faults.
because most faults appear at domain boundaries.

_ : X o _ b. Application.
(5) The relation of depth of testing with other metrics is shown in (1) Data collection and reportingCollection begins early in the
table 10-20. software life cycle when the first software product, usually a re-
f. Tailoring. quirements definition document, has been approved and placed

(1) The recommended data definitions for this metric are collec- Under configuration control. Continue to collect fault profiles data

ted for each unit. However, data may also be collected at the cscfor the life of the program. The recommended reporting frequency
or system level if adequate test tools are available. for this metric is monthly.

. . - . (2) Preparation.A corrective action system is the source of prob-
the(Z)e ff?)?tpttr(]) OJJI?:;”%Eizta_l_cr?;fgt'ggi;:l%ﬂg t;?etag&;z(i;;g?ns'derIem/change report, or fault, information for this metric. Chapter 2

) ) provides a method for uniformly prioritizing and categorizing prob-
(a) Always compute the domain measure (inputs). lems and changes. In order to compute the age of faults, individual
(b) Always compute the path and statement measures over the sefaults need to be tracked by the corrective action system, with the

of basis paths (see complexity metric, para 10-14), on units thatdates of problem start and problem closure recorded.

implement high priority requirements, or if a unit's complexity val- c. Data definitions.

ues exceed established thresholds. (1) For each CSCI, each fault priority, and each fault category,

collect—

(&) Cumulative number of faults detected.
(b) Cumulative number of faults closed.

72 DA PAM 73-7 « 25 July 1997



(c) Average age of open faults. number of faults may be opened in a particular month, due to faults
(d) Average age of closed faults, which is the same as averageobserved during a formal review, software audit, or test. Conversely,

time to close. a cleanup period prior to a major test or software fielding release
(e) Average age of all faults. may show a large number of problems closed.
(2) Average ages can be computed using the formulas in table (b) Detailed detection/resolution historjn alternate display of
10-21. corrective action activity is to plot the number of problem/change

d. Presentation and analysi$he displays discussed here can be reports that were opened and the number closed over periodic inter-
organized by any desired grouping of fault priorities and faylfs such as months. Figure 10-19 is an example of monthly PCR
categories. opening and closure activity for one CSCI.

(1) Fqult history. . ) . (2) Average age of software faultdwerage fault age can be

(a) History to date.A common display of fault profiles metric e over time to expose trends in fault resolution. Fault age
data is shown in figure 10-18 as the cumulative numbers of S(.)ﬂ'graphs can indicate which CSClIs and which problem priorities are
€he most troublesome with respect to fixing faults. Figure 10-20 is a
egraph of the average length of time a fault not yet resolved has been
in the corrective action system.

Cumulative fault history displays often show large differences be-
tween reporting periods, appearing as “ steps” in the curves. A larg

Table 10-21
How to compute average fault ages
Average age of Formula Where
Open faults only D open/Faults open D open = the sum of the days between the time each
open fault was detected and the current
date
Faults open = total # of open faults
Closed faults only D closed/Faults closed D closed = total # of days all closed faults remained
open
Faults ¢josed = total # of closed faults
All faults (open and closed) D gpen/Faults total Faults total total # of open and closed faults
Depth of Testing - Statement Coverage
System: HONDO  CSCI: C3l  Report Date: 8/2/95
100
80
g
(0]
8 —
@ 60
el -
2
N
A
40
o
€
©
a
20
0 \ \ \ \ \
4 5 6 7 8 9 10 1
Program Month (12/94 - 7/95)
D Test Coverage @ Overall Success

Figure 10-17. Sample depth of testing graph of statement measure

DA PAM 73-7 « 25 July 1997 73



Number of PCRs

Cumulative S/W PCRs Opened & Closed

System Name: SMAS CSCI: TARGET Report Date: 1/4/93
350 e e aan et

300

N
n
[=]

N
o
(=]

-
wn
o

-
[=]
[=]

4]
[=]
i

T T T T T T T T T T 1
13 14 15 16 17 18 18 20 21 22 23 24 25 26 27 28

Program Month (9/91 -12/92)

T

o
|
.
\

—e—— Cumulative detected (priorities 1,2,3)
---4---  Cumulative closed (priorities 1,2,3)

Figure 10-18. Sample graph of software problem history

S/W PCR Open and Close Activity
System Name: GRIDLOCK  CSCl: JAM  Report Date: 1/4/93

120

100

o
o

Number of PCRs
3
|
|
|
|

&
\
\
\
\

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Program Month (9/91 - 12/92)

D Opened [/} Closed

Figure 10-19. Example of monthly PCR activity

DA PAM 73-7 « 25 July 1997




Average Age of Open S/W PCRs

System Name: SMAS  CSCI: TARGET  Report Date: 1/4/93
20 B

15

Weeks
)

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Program Month (9/91 - 12/92)

: — S

| ———— Prioity1 ——A—- Prioty2 - % Priofity 3

Figure 10-20. Sample graph of average age of open faults

e. Management information. that the developer is not allocating adequate resources to correcting
(1) Fault counts should be based on all tests and evaluations on groblems, or that some faults are exceedingly difficult to fix.
formal baseline which is under configuration control. Results of (8) Large deviations of individual faults from the average age of
informal test-fix-test performed at the unit level should not @ faults should be investigated. The average open age of high-
counted. priority faults should also be examined with respect to the time
(2) The gap between open and closed faults should be closelyemaining to the next major test or milestone.
monitored. A constant gap or a continuing divergence is reason for (9) Examining the categories of software faults can provide in-
the user representative to take appropriate action, especially wheight into the underlying problems. During the early stages of soft-
approaching a key test or milestone. ware development, the fault profiles metric reports the quality of
(3) Inadequate problem resolution by the developer can cause théranslating software requirements into the design. Design faults sug-
cumulative number of closed faults to remain constant over time,gest that requirements were not defined correctly, or that they are
and a number of faults will remain open. The age of the open faultsP€ing misunderstood by the developer. Later, the fault profiles met-
should be checked to see if they have been open for an unreasonablé measures the implementation of requirements and design into
period of time. Those faults which are not resolved represent ancode, assuming an adequate level of testing is performed. Code
increased risk. Managers should identify the reason that faults ardaults could result from an inadequate design, or a poor job of
not closed and take corrective action. implementing the design into code. Examining the fault categories
(4) Managers should be aware of the cumulative effect of a large!0 determine causal relationships should be performed in any analy-
number of low priority faults. Too many minor problems may im- Sis of fault profiles. Be aware that a single fault may be assigned to
pair overall system operation or successful test conduct. PMs mayP"€ Or more categories. o )
wish to establish thresholds to limit the cumulative effects of un- (10) The PM should understand any fault or * bug” tracking tools

resolved priority three and lower faults on cost or ability to operate US€d Py the developer for tracking fault profiles data. The
the system effectively developer's system for collecting problem reports should be re-

; i d early in the program to determine how much of a difference
(5) Army policy for the acceptable numbers of open software /€Wed _m
faults prior to certification of readiness for dedicated operational (N€ré is between the recommended data definitions above and the

o : : : - definitions used by the tool.
:)‘ilsélrrl]tg/ 'Sn(éu;“rr:gdtvlvr:) sz(fjtllt(;nrrYJ!tothecr::?g;zj 6. At :a minimum, all (11) The PM should establish criteria to determine when a fix
(6) The PM should establish a clear description of when a fault is must be validated and by whom (Government or developer SQA).

considered discovered and closed. Criteria for the date discovereqe(gt)eg'}ﬁ ?h,\g ?Qgﬁlld ri)f(i?gmdeatt;l? following issues which are not
may be the date on which the original problem report was written, P P :

or when the report was entered into the corrective action SyStem'nogta():iir-{amf//(lziﬂsktegfv(\:/ﬂ”etﬁtelzogﬂﬁ’sc%srtio?irgs t'gr'% :i?ycgrzr:?;ﬁn?l:nlt;;
Criteria for the date closed should reflect the CCB'’s judgement that?e caused by trivial errors in syntax, while priority four faults may

regression testing was adequate and applicable documentation i . .
. - . ; - equire a redesign.
updated. Differences in defining corrective action event dates can (b) Problem description/prioritization is not always obvioBsr

significantly influence the average ages reported_ via this meric. example, a single character error in a source statement which leads
(7) Average age graphs can track whether the time to close faults[O an improperly executed function. Interpretations of problem and

is increasing over time. Increasing time to close faults may 'nd'catepriority may be different depending on whether the cause or effect

DA PAM 73-7 « 25 July 1997 75



is emphasized. Priorities in table 2—4 are fairly straightforward. The (a) Software contribution to system mission reliabisiiyg
method for determining fault categories and defining fault priorities fault profiles metric data, TIRs, and failure definition/scoring crite-
is not as important as applying the definitions consistently. ria (FD/SC) from the RRR, software analysts, and system RAM
(c) Category of faultFaults in requirements are often the most analysts need to mutually define and compute the items in table
expensive and persist the longest. These faults may not be detectetD-23. Derive these items only when the software is used in accord-
until the software is used on site. Design faults could be related toance with its OMS/MP. Definitions and algorithms can be found in

processing or control flow. If these faults persist past unit-level DA Pam 73-8.
testing, check inputs tested as reported in the breadth of testing
metric. Control and sequence faults in code may include missing

paths, unreadable code, loop termination criteria incorrect, uncon-Table 10-22

trolled GOTOs, spaghetti code (old COBOL). These faults are often Fault profiles relation with other metrics

caught with path testing. If many of these types of faults persist pastMetric

Relation

unit testing, check the depth of testing metric for completeness. = o schedule
(13) The fault profiles displays do not identify which individual '
faults persist over time. The developer's corrective action system
may identify the software unit related to a fault to indicate product
status. With unit identifiers, it may be possible to identify problem CRU
units and combine analysis with other metrics for a more complete
diagnosis. SEE
(14) When interpreting fault profiles data be aware that error
detection is closely tied to the quality of the development and Requi
K . . equirements
testing process. A low number of detected faults could 'nd'catetraceability
either good process management with good products, or a procesgequirements
with an inadequate amount or improper type of testing. Fault pro- stapility

Cost and Schedule will be adversely affected by
unusually large numbers of software problems/
changes. The later in the life cycle serious prob-
lems occur, the greater the affect’'s severity.
Problem reports may indicate computer resource
capacity problems.

Developers with high SEE ratings should be ex-
pected to have superior problem reporting sys-
tems and low average ages of open faults.

Do test cases exist for each requirement that has
been modified to correct a fault?

A high number of requirements faults should
generate a high level of requirements changes

files metric data should not be evaluated without also considering

measures of test coverage. For example, a plot of code categorfesign stability

faults could be evaluated against the amount of testing which was
done in each month. The relationship of code faults to test coverage

can be used to gauge the maturity of software and the adequacy dfemplexity

the test program.
(15) Reliability models can be used to forecast the rate additional
faults will be discovered based on previous error detection history.
(16) The relation of fault profiles with other metrics is shown in
table 10-22.

f. Tailoring.

(1) The PM may want to track fault profiles more frequently than
monthly during periods of heavy testing.

(2) It may be desirable to collect and report fault profiles data at
the unit level for particularly complex, critical, or error-prone items.

(3) The test in which a fault was discovered can supplement the

Breadth of testing

Depth of testing

Reliability

as the faults are fixed.

Additional testing must be performed on new and
changed units, possibly increasing the number of
reported faults.

High-complexity units often contain more faults.
Ensure the test coverage for these units is high.
The number of faults discovered should be com-
pared to the number of software requirements
tested. Many faults with low coverage is un-
desirable.

The number of faults discovered should be com-
pared to the percentage of inputs, paths, and
statements that have been tested. Many faults
with low coverage is undesirable.

Unresolved or unobserved faults in the software
baseline may cause system reliability problems.
Reliability models can be used to forecast the
rate additional faults will be discovered.

data for fault profiles metric (internal vs. Government, formal vs.
informal).

10-18. Reliability metric
a. Description.The reliability metric assesses two aspects of soft-

Table 10-23
Gomputed items for software/system reliability tracking

ware’s ability to perform as intended. One set of measures expresse

software’s contribution to system mission reliability. System failures ltem

Description

caused by software and the time it takes to restore the system to it§

previous operating condition after these failures occur are tracked.

The other set of measures track summary data obtained from ana-

lytic models of reliability. Using data from the fault profiles metric, 2.

corrective action system, and test history, reliability models can

project future failures as a function of test time (such as time to next3.

failure or failure rate) and to project the number of latent, or as yet

unobserved, faults remaining in a software baseline. These projec-4'

tions can be used to gauge how much testing will be enough to hav
confidence that critical faults will be within acceptable limits when
the software is fielded.

b. Application. 6.

(1) Data collection and reporting.
(a) Begin collecting the measures dealing with system failures

caused by software during formal system-level tests, and continue’-

through PDSS. The recommended reporting frequency for this infor-
mation is monthly prior to deployment and as needed after fielding

The point estimate of mean time between mission failures
caused by system hardware or software as measured during
the test event.

The 80 percent lower confidence bound value of mean time be-
tween mission failures caused by system hardware or software.
The point estimate of mean time between mission failures
caused by software as measured during the test event.

The 80 percent lower confidence bound value of mean time be-
tween mission failures caused by software.

The mean time to restore the system to the operational condi-
tion existing before the failure, after a software-caused system
failure has occurred.

The median time to restore the system to the operational condi-
tion existing before the failure, after a software-caused system
failure has occurred.

The maximum 95th percentile value of time to restore the sys-
tem to the operational condition existing before the failure, after
a software-caused system failure has occurred.

to reflect reported system failures. The system must be used under
typical operating conditions for reliability data to be meaningful.

is monthly.
(2) Preparation.

(b) Software reliability modelingln order to derive a predicted

(b) Begin collecting software reliability model data during unit software failure rate and an estimate of latent software faults re-
testing. The recommended reporting frequency for this information quires selecting an appropriate reliability model. Selecting a model
is based on: the length of the test, how a software failure is defined,
the adequacy of the operational profile, as well as the assumptions

76 DA PAM 73-7 « 25 July 1997



underlying the use of each model. After choosing an analytical (c) The required values for mean, median, and maximum 95th

model, it is important to determine how closely the past predictions percentile mean time to restore the system to operational status.

from that particular model for a particular data set reflect the actual (d) The items in table 10-23.

t_)ehavior observed for that data set. Variou_s statistical and qualita- (2) Software reliability modelingFor each reporting period and

tive m_ethods can be employed to determine the degree_of COMyach reliability model used, collect—

monality between the two data sets. If the selected model is not an : e
; ; (a) Test identification.

accurate reflection of the actual behavior then apply other models b) N f th liabilit del d

unj[il z_i_good fi_t i_s achieved._The most c_omprehens_iv_e collectio_n of (b) Tr?me ?tw e fre_lla ity mobg 956 : h desired s

reliability prediction models is available in the Statistical Modeling ~ (C) The software failure rate objective, such as desired goal for

and Estimation of Reliability Functions for Software (SMERFS) an acceptable number of SOftW"_’“e failures per month.

software package developed by the Government (see NSWCDD (d) The measured (actual) failure rate computed over the test

84-373). Other software tools are also provided within SMERFS to period.

compare a model’s prediction of the behavior of a software applica- (e) The projected failure rate determined by the reliability model

tion with the actual behavior of that software. Software faults usedfor the test period.

as input to the analytical models are described in the fault profiles . presentation and analysis.

metric, paragraph 10-17. (1) Figure 10-21 shows computed point estimates of system
c. Data definitions. . o mean time between mission failures, the required MTBF and associ-
(1) Software contribution to system mission reliabilfor each ated 80 percent lower confidence bound plotted over time. A recom-
Sy(s;()en%gi\tleildéi?iﬁ‘i:a\{t(ieonr: collect— mended display for mean time to restore system to operational
(b) The required value of system Mean Time Between Mission status, _also plotted_over_nme, is shown in f!gu_rg 10-22. .
Failure (MTBF). _ (2) FlgL!re 10-23 is a display o_f software reliability moc_iel projec-
tion showing a steadily decreasing rate of software failures.

Mean Time Between Failures (MTBF)
System: DEVICE Report Date: 11/6/94

T T T T H T i T T T 1
12 13 14 15 18 17 18 19 20 21 22
Program Month (12/93 - 10/94)

- — - System MTBF Requirement —e— Computed Software MTBF
~—<+-— 80% LCB Software MTBF

N

Figure 10-21. Sample graph of system mean time between mission failures

DA PAM 73-7 « 25 July 1997 77



Mean Time To Restore (MTTR)
System: ADIS Report Date: 5/11/95

801
|
R e
4+
60
...
i S +
“s‘\\ ..... + ............... D R
[ T e -+
3 40 A +..
X @ ---- @ o \“\ R
1 - ~__*-\~ -~ - R TR
b o S i S, R
20 e ——— A
e e T e ST TIT AT A
e e
D SRS
o-
18 19 20 21 DT 22 23 24 25 26 27 28 29 30
Program Month/Test Event oT
| (Spec. Requirement) MTTR (Computed) 1
——-——Mean ——4—— Mean |
——————— Median ---+--  Median ﬁ
‘l 95th Percentile @ - o 95th Percentile !

Figure 10-22. Sample graph of mean time to restore system

Software Reliability Projection Using NHPP Model
System: PRTS Report Date: 9/7/95

S

£ \\\
c
[¢]
S 40 h\
&
- 30
[
3 N
® 20 L 2
[F18 ~
A
3
10 +
N
OO RSO UTUROPRI ,T.‘f...‘_.. .............................................
0 - : 7 — T T

. T : Y = ";.:.:’;—_‘;‘"
10 15 20 25 30
Program Month (8/93 - 9/95)

——e—— Projected Failure Rate —«—— Actual Failure Rate
~~~~~~~~~~~~~~ Failure Rate Objective

Figure 10-23. Sample graph of reliability model projection

e. Management information. when it cannot perform specific critical functions or when a percent-

(1) The following information applies to calculating the contribu- age of workstations or printers in the work area are not functioning.
tion of software to system mission reliability. (b) The system must be used under typical operating conditions

(a) The user representative defines when the system is down infor observed system mission reliability data to be meaningful. The
the system’s FD/SC. Often, the system is characterized as dowrsystem’s operating conditions are documented in the OMS/MP.

78 DA PAM 73-7 « 25 July 1997



When measured under these conditions, the reliability metric esti-

(3) Creating realistic operational conditions during pre-deploy-

mates how often one can expect the software to cause system failment testing can be expensive. Tracking reliability is easier during
ures in a field environment.

(c) Check reliability point estimates as each failure is encoun-

PDSS.
(4) When tailoring, consider the level of data necessary for each

tered in DT to determine if the trend is moving towards the system’s computed reliability item (see table 10-23).

required reliability value. The PM should consider delaying OT

(5) Collecting and reporting the estimated number of residual, or

until the computed MTBF is greater than the lower 80 percent |atent, faults may be desirable for systems that are highly critical or

confidence bound.
(2) Use the fault profiles metric to compare trends in the types of

will be deployed for many years.

faults occurring and their rates of closure to projections software 10-19. Manpower metric
error populations and/or expected software failure rates.
(3) The PM should use reliability projections to gauge how much developer’s application of human resources to the development pro-
testing will be enough. These projections can be based on eithegram and ability to maintain sufficient staffing to complete the
system failures due to software or fault profiles.

(4) The relation of reliability with other metrics is shown in table

10-24.

Table 10-24

Reliability relation with other metrics

Metric

Relation

Cost, Schedule

CRU
SEE

Requirements

traceability

Breadth of testing

Fault profiles

Cost and Schedule will be adversely affected by
unusually large numbers of system failures. The
later in the life cycle a failure occurs, the greater
the failure’s severity.

Capacity shortages may lead to system failures.
A developer with a higher SEE rating is more
likely to do reliability modeling.

Many software 'failures’ are actually the result of
system or user requirements which were not im-
plemented in the final software code. Verify that
traces are complete from requirements to code.
The reliability metric can be used to estimate the
number of residual errors in the code and
amount of additional system-level testing re-
quired.

The data needed to compute fault profiles can be
used for reliability measures.

f. Tailoring.

a. DescriptionThis metric provides an indication of the

project. The manpower metric is composed of two parts: an effort
measure monitors labor hours planned and expended, while a staff-
ing measure accounts for quantity and types of personnel needed to
do the work. This metric assists the Government in determining
whether the developer has scheduled a sufficient number of employ-
ees to produce the product in the time and budget allotted.

b. Application.

(1) Data collection and reportingTrack for entire length of
development and PDSS. The recommended reporting frequency for
this metric is monthly.

(2) Preparation. The manpower metric reports the labor staffing
in a software project. These elements include the planned level of
effort, the actual level of effort, and the losses in the software staff
measured by labor category. Anticipated effort and staffing profiles
are derived from planning documents, usually the developer’s pro-
posal, software development plan or CRLCMP.

c. Data definitions.For each CSCI, labor category, and experi-
ence level tracked, collect—

(1) Labor category.

(2) Experience level (experienced, special, total).

(3) Number of personnel planned to be on staff for the reporting
period.

(4) Number of personnel actually on staff in the reporting period.

(5) Number of unplanned losses in personnel that occurred.

(6) Number of labor hours planned to be expended in the report-

(1) Some user representatives would rather specify the operaing period (cumulative).
tional availability (Ao) for their system, instead of MTBF. Ais
the percentage of time the system is either operating or is capable oferiod (cumulative).

operating. The data definitions for MTBF can be adjusted to reflect

Ao.

(7) Number of labor hours actually expended in the reporting

d. Presentation and analysihe primary information obtained
from the manpower metric is derived by comparing planned and

(2) When tailoring, consider the criticality of the software in the actual levels of effort and personnel. Figure 10-24 depicts the effort
system. Tracking MTBF is more appropriate for safety-critical sys- measure for an entire system for all labor categories over time.
tems. Ag is more appropriate for systems which can be safely shutFigure 10-25 is an example of a staffing profile. Displays can be
down to resolve intermittent problems.

organized by CSCI or individual labor category for more detailed
analysis.

DA PAM 73-7 « 25 July 1997 79



Effort Profile

System: AIEWS  CSCI: INFO_LINKS Report Date: 6/3/95
2000 -~ —

g

8
|

Hours of Effort (1000s)
2
3

Program Month (4/94 - 5/95)

-
i —+—— Special Skills (Actual) ---4---  Special Skills (Planned)
{ —=—— Experienced (Actual) ---®--  Experienced (Planned)

|

—e—— Total (Actual) ---e--  Tofal (Planned)

Figure 10-24. Sample graph of manpower effort measure

Staffing Profile
System: AIEWS  CSCI: INFO_LINKS  Report Date: 6/3/95

100
80 A A A
)
c
c
8 60
2 -
n‘ -
p -
5 40 - o—@ d 4 o
2 TG G- @8- 0
=5
pa
20
0 ——— \ = \ . \ \ - \ \ m \
1 2 3 4 5 6 7 8 9 10 1 12
Program Month (4/94 - 5/95)
—e— Experienced (Actual) ---&-- Experienced (Planned)
—— Total (Actual) ---&--  Total (Planned)
D Experienced Losses
Figure 10-25. Sample graph of manpower staffing profile
e. Management information. adversely affect project success. Adding many unplanned personnel

(1) Software staff includes those engineering and managementate in the development process may indicate impending problems.
personnel directly involved with any software activity. Losses and (2) Significant deviations from planned staffing levels may indi-
gains for each labor category should be tracked to indicate potentiatate problems in the developer's management procedures or prob-
problem areas. High turnover of key and experienced personnel cafems in product quality that require additional effort to repair.

80 DA PAM 73-7 « 25 July 1997



(3) The shape of the staffing profile curve tends to start at abeing actually and logically connected (in a static sense) with all
moderate level at the beginning of a project, grow through design,required units. Dynamic tasking is not considered when determining
peak at implementation and testing and diminish near the comple4f units are integrated.

It;I?QIyOftc;nE)iggI?tgndti(fafsétrlggf g‘cﬂ'r‘]’t'g‘ﬁl t':g°|{f:‘f&gg'?ﬁyhg%%?%are d. Presentation and analysighe basic information obtained by

S ; i gwe development progress metric is derived by comparing planned to
deviation between actual and planned values should be investigated o quantities of software units that have completed various steps
to determine the cause. During PDSS, the staffing curve is typically;, o development process over time. Typically, degrees of design,

fla&e)r._rhe manoower metric is used primarily for proiect manage- implementation, and test are tracked. A sample display of develop-

P . primartly project manage- o, progress is shown in figure 10-26. To enhance readability, it
ment and does not necessarily have a direct relationship with otherIS recommended to plot the planned and actual numbers of units as
technical and maturity metrics. For example, growth in number of P P

personnel is not necessarily reflected by an increase in produclpercentages of the total number of units.

quality. e. Management information.
(5) The relation of manpower with other metrics is shown in (1) The three development steps at which counts of units are
table 10-25. taken in this metric are for those units that have completed the
software design, software implementation and unit test, and unit
integration and testing activities.
Table 10-25

(2) Design, coding and unit testing, and integration of units
should progress at a reasonable rate. Examining the progress in
these three categories versus what was originally planned can indi-
Manpower is a primary driver of cost and sched- cate potential problems with schedule and cost.
ule. in i i i i i

T . (3) In certain instances, consideration should be given to a possi-
SEE IDeveIODe.rs. with higher SEE ratings should be ble re-baseline of the software, such as in an evolutionary approach.

ess sensitive to personnel turnover. .
Effort in analysis and test design should increase That is, development progress may appear to suddenly degrade
in response to significant requirements changes because the overall set of requirements (and projected number of
to provide additional support for modifying re- total units) has been expanded to cover another evolution of user
quirements and associated tests. _ requirements. You can simply add to the total number of units due
Design and implementation effort should grow in to changes in the requirements or begin tracking the newer evolution
;%lsdr?t(i)gr?;t(s)ufalgglrftlCfgptdg(:?g;%na%aggdeg tcohg;%\ggé or build separately.. In either case, all other metrics would need to
Effort in areas affected by faults should increase reflect the re-baseline as well.
in response to significant increases in the num- (4) You cannot judge whether the objectives of the development
ber of new faults to provide additional support to plan can be achieved using only the development progress metric.
fix the problems. The testing metrics are needed as well.
(5) The relation of development progress with other metrics is

shown in table 10-26.

Manpower relation with other metrics

Metric Relation

Cost, Schedule

Requirements
stability

Design stability

Fault profiles

Development
progress

Significant changes in staffing or effort allocation
will likely be reflected by changes in planned
and/or actual levels of development progress.

f. Tailoring. Depending on the planned level of maintenance, it Table 10-26
may be expedient to collect and report the manpower metric only atDevelopment progress relation with other metrics
the system level during PDSS, rather than by CSCI. Metric

Relation

Cost, Schedule Cost and Schedule will be adversely affected by

10-20. Development progress metric
significant delays shown by development prog-

a. Description.The development progress metric measures the

degree of completeness of the software development effort, indicat-CRU rAerséSé ny target upper bounds being approached
ing the readiness to proceed to subsequent activities in software or capacities exceeded as more units are inte-
development. grated?

b. Application. _ _ ) ) ) Requirements
(1) Data collection and reportingBegin collecting during soft- traceability
ware requirements analysis and continue throughout software develRequirements

Are units that implement critical or high priority
user functions progressing as expected?
Development progress measures should de-

opment and PDSS. The recommended reporting frequency for thisstability
metric is monthly.

(2) Preparation. Schedules for software unit development, test,
and integration are needed.

c. Data definitions.

(1) For each CSCI collect—

(&) Number of software units in the CSCI.

(b) Number of units planned and actual number of units fully
designed and reviewed by the Government (cumulative).

(c) Number of units planned and actual number of units fully
coded and successfully unit tested (cumulative).

(d) Number of units planned and actual number of units fully

Complexity
Depth of testing

Fault profiles

Manpower

crease in response to significant requirements
changes as units undergo redesign and retest or
new units are added to the total.

Are highly complex units progressing through the
development activities at a reasonable rate?

Are depth measure coverages reasonable for
units that have completed unit testing?

Progress may lag behind plan if unusually large
numbers of problems are being corrected. Con-
versely, reasonable progress with many out-
standing faults may indicate corrective action is
not occurring.

Are delays in progress due to insufficient staffing
or high turnover of personnel?

integrated into the CSCI (cumulative).
(2) “ Successfully” tested is defined as completing all test cases
(required test coverage) with no defects.” Integrated” is defined as

DA PAM 73-7 « 25 July 1997

81



Development Progress
System Name: ASII2 CSCI: Locator Report Date: 6/3/95
100 - s
= 80
[ =
g
o
2 60
k
2
g 40
G
(]
2
5 2 -
0 M= ; ‘
6 7 8 ] 10 kR 12 13 14 15 16 17
Program Month (6/94 -5/95)
| —&— Designed (Actual) ---a--- Designed (Planned)
—+— Tested (Actual) ---4+--- Tested (Planned)
——e— Integrated (Actual) ---o-- [ntegrated (Planned)

Figure 10-26. Sample graph of development progress

f. Tailoring.

completed software qualification testing and number that have com-

(1) Use local data and local data formats as input to the calcula-Pleted CSCI/HWCI integration, particularly for large systems or

tions or as input to tools used for the calculations.

(2) Different data definitions may be more appropriate for soft-
ware engineering environments using object-oriented or fourth gen-
eration languages. Tracking the progress of objects, function points
standard data elements, or other entities through comparable deve
opment steps may be more meaningful.

(3) It may be worthwhile to define and track CSCl-level attrib-

those with many interfaces to other systems.

Section Il
Relating Metrics to Management Issues

k0-21. MAIS assessment illustration
Paragraph 8-9 discussed the requirements of DOD 5000.2-R and
quarterly status reporting. While the metrics in this chapter do not

utes with development progress, such as number of CSCls that havB!lly address all the reporting issues, they can provide useful infor-

mation as part of the total program input for each assessment area.
Table 10-27 relates the Army metrics to each DOD issue.

Table 10-27
Metric correlation to MAIS status report requirements

MAIS assessment issue Assessment must address at least

Contributing metric

Schedule and progress

Growth and stability

Funding and personnel resources
Product quality
Software development perform-

ance
Technical adequacy

Completion of program milestones, significant events, and indi-
vidual work items

Stability of required functionality or capability, and the volume of
software delivered to provide required capability

The balance between work to be performed and resources as-
signed and used

The ability of delivered product to support the user's need with-
out failure, and problems and errors discovered during testing
that result in the need for rework

The developer’s productivity capabilities relative to program
needs

Software reuse, use of Ada for software development, and use
of approved standard data elements

Cost, Schedule, Development progress

Requirements traceability, Requirements
stability, Design stability, Complexity, Com-
puter resource utilization

Cost, Manpower

Fault Profiles, Reliability, Complexity,
Breadth of testing, Depth of testing

Software Engineering Environment, Devel-
opment progress

Requirements traceability, Development
progress, Complexity

82

DA PAM 73-7 « 25 July 1997



Appendix A DA Pam 25-6

References Configuration Management for Automated Information Systems

Section | DA Pam 73-1

Required Publications Test and Evaluation in Support of System Acquisition

AR 25-3 DA Pam 73-2

Army Life Cycle Management of Information Systems. (Cited in Test and Evaluation Master Plan (TEMP) Format, Review and

paras 1-4, 3-5, 5-6, 5-8, 5-9)) Approval Procedures

AR 70-1 DA Pam 73-3

Army Acquisition Policy. (Cited in paras 1-4, 4-6, 5-6, 5-9) Critical Operational Issues and Criteria (COIC) Procedures and
Guidelines

AR 73-1

Test and Evaluation Policy. (Cited in paras 1-1, 1-4, 1-6, 1-9,DA Pam 73-4
1-10, 2-2, 3-2, 4-3, 5-8, 5-10, 6-39, 6-41, 6-46, 6-47, 6-54.Developmental Test and Evaluation (DT&E) Guidelines

AR 380-19 DA Pam 73-5
Information Systems Security. (Cited in para 3-2, 3-8.) Operational Test and Evaluation (OT&E) Guidelines
AR 700-142 DA Pam 73-8

Instructions for Materiel Release, Fielding, and Transfer. (Cited in Critical Elements in Support of Test and Evaluation
ara 7-6, 7-11.

P ' ) DA Pam 700-55

DA Pam 70-3 Instructions for Preparing the ILSP

Army Acquisition Procedures. (Cited in paras 4-6, 5-9.) DA Pam 700-142

MIL—STD-498 Instructions for Materiel Release, Fielding, and Transfer
gofiv(\)/iel I)Development and Documentation. (Cited in paras 1-13, 2—DOD 5000.2-R

Mandatory Procedures for Major Defense Acquisition Programs
(MDAPs) and Major Automated Information System (MAIS)

Section |l Il
Acquisition Programs

Related Publications
A related publication is merely a source of additional information.

The user does not have to read it to understand this publicationDODD 3405.1

Computer Programming Language Policy

AR 5-11
. . . DODD 5000.1
Modeling and Simulation Defense Acquisition

AR 40-60
. . . . DODD 8000.1
Policies and Procedures for the Acquisition of Medical Materiel Defense Information Management Program

AR 70-1 _ DODI 7000.2
Systems Acquisition Policy and Procedures Cost/Schedule Control System Criteria

AR 71-2 o o DOD-STD-2167A
Basis of Issue Plans (BOIP) and Qualitative and Quantitative pefense System Software Development

Personnel Requirements Information (QQPRI)
DOD-STD-7935A

AR 7_1_9 L ) DOD Automated Information System (AIS) Documentation
Materiel Objectives and Requirements Standards

AR 385-16 ‘ . MIL-HDBK-881

System Safety Engineering and Management Work Breakdown Structure for Defense Materiel Items

AR 525-1 MIL-HDBK-245C

Strategic Systems Preparation of Statement of Work (SOW)

AR 602-2 MIL-STD-973

Manpower and Personnel Integration (MANPRINT) in the Materiel Configuration Management
Acquisition Process

NBS 500-99
AR 700-127 Structured Testing: A Software Testing Methodology Using the
Integrated Logistic Support Cyclomatic Complexity Metric
CMU/SEI-87-TR-23 NSWCDD 84-373
A Method for Assessing the Software Engineering Capability of Statistical Modeling and Estimation of Reliability Functions for
Contractors Software (SMERFS)
CMU/SEI-93-TR-24 TRADOC Regulation 71-2
Capability Maturity Model for Software (Version 1.1) Combat Developments for Battlefield Automated Systems

TRADOC Pamphlet 71-7

DA PAM 73-7 « 25 July 1997 83



Government in-house work agreements involving software develop-

Operational Requirements for Battlefield Automated Systems ment and testing. Substitute the name of the Government agency or

) the term “ developer” for “ contractor” in the sample paragraphs.
Section Il
Prescribed Forms . B—2. T&E involvement in the solicitation process
This section contains no entries. a. In general, the Government acquires the products and services
described in this pamphlet by means of formal solicitations. The
solicitation process is typically comprised of three major steps:

(1) The Government makes known the products or services
DA Form 5005-R needed, with applicable conditions, by issuing a request for proposal
Engineering Change Proposal - Software (RFP).

(2) Industry responses to provide the items in the RFP are evalu-
ated and the most qualified organization(s) identified to perform the
work.

(3) Final negotiation of terms between the Government and in-
dustry occurs and one or more contracts are awarded.

Section IV
Referenced Forms

DD Form 1423
Contract Data Requirements List

Appendix B b. In order to have an impact on specific software development
Statement of Work (SOW) Considerations tasks, software T&E personnel should be involved in developing

portions of the RFP, including its SOW. Specific items which
B-1. General should be addressed by software T&E personnel are:

a. The statement of work (SOW) defines all work tasks and (1) Distribution of CDRL items on a DD Form 1423 (Contract
services to be performed over the course of a Government contractpata Requirements List) should include independent evaluators, the
It provides information which cannot be defined in the limited scope ppp's software matrix support activity, and LCSEC/PDSS personnel.
of technical specifications and contract data requirements “St?z) Software tests should permit derivation of data which support

(CDRLs). Speuflc_atlons are limited to descrlptlo_ns of teChn'C?I and stated software maturity measurements and the selected metrics set.

performance requirements of products. CDRL items are limited to . .

describing technical data to be delivered. (3) Contracted software testing should provide usable data for
Government evaluations.

b. Software test and evaluation is an emerging technology for ” . .
which specific requirements are not well defined in existing specifi- = C- Some specific software T&E issues which should be addressed

cations and standards. Specific tasks for planning and executing? contractor proposals to SOW items for procuring software are
software T&E should be tailored to the technical and managementProvided in figure B—1. Checklist items with a subjective score of
characteristics of each software development. MIL-HDBK—245C es- four or less should be clarified or elaborated.

tablishes formal requirements for developing and implementing a

SOW. B-3. Acquiring metrics information
c. The SOW is part of a binding legal document, a contract, and Sample paragraphs regarding metric data for use in CE are provided
should be prepared carefully and accurately. for reference in figure B—2. The solicitation sections to which the

d. The material in this appendix can be tailored and applied to paragraphs apply are noted. Select and tailor only those paragraphs
that are most applicable.

84 DA PAM 73-7 « 25 July 1997



Software T&E Issue Rating
1. Flow down of software T&E requirements to third party development activities and subcontractors. .
2 Data rights and access to software T&E data. i"
3 Relationship of software T&E to the software quality process. e
4 Requirements for demonstration and evaluation of software maintainability. "
5 Interface of software T&E to configuration management/contro! activities. e
6. Documentation and utilization of software problem/change reports identified during software T&E. e
7.  Delivery of and utilization of software development documentation by software T&E activities. )
8 Involvement of software T&E in the review and audit process. e
9 Software T&E issues in selection of the developer (SEE metric rating). e
10. Requirements for software test hooks or data ports for software T&E instrumentation. /.
11. Coordination of IV&V activities with software T&E. "
12. Reporting of correlation between software test methods and objectives of the software T&E program. Iy
13. Requirements for system and software specifications to identify testable requirements. ‘L
14. Scheduling of levels of test to support evaluation of software maturity. /e
15. Independent audits are conducted for each step of the sofiware development process. L
16. Standards are established for T&E of existing designs and code for re-use in new applications. i
17. Standards are applied to the preparation of unit test cases. "«
18. Coding standards are used. K
19. Statistics on software design errors are available to support T&E. it
20. Metrics are used and applied logically and usefully. .
21. Statistics on software implementation and test errors are plotted over time to show trends. I
22. Capacity requirements (CRU) are monitored for computer memory utilization. /e
23. Capacity requirements are monitored for CPU throughput and utilization. "
24. Capacity requirements are monitored for /O channel utilization. VL
25. Security levels and security accreditation T&E is addressed. o
26. Test coverage is measured and recorded for each level of software testing. I
27. Action items resulting from reviews are coordinated with T&E program and data results. /o
28. Software problem/change reports are prioritized, recorded and delivered to the Government. o
29. A formal mechanism is used for controlling changes to code. N
30. Identification of models/simulations used for T&E purposes. N
31. A formal mechanism is used for configuration management of the software tools used in T&E. z
32. Testbeds and/or instrumentation needs are identified or required as part of the T&E program. "
33. Validation or certification of testbeds or instrumentation is required prior to T&E use. 0
34. Interoperability standards are invoked and tests of corresponding interfaces adequately addressed. "

Indicate the level at which each issue has been addressed in the technical proposal.
Assign a score between 0 (not addressed) and 10 (very well addressed).

Figure B-1. Software T&E issue checklist example

DA PAM 73-7 « 25 July 1997

85



Section C - Description/specifications/work statement

3.n.1 Software development risk control procedures. The contractor shall document his software risk
control procedures to ensure the effort is being carried out according to the technical and management
objectives for the program. The measures or metrics used to monitor and identify risk in schedule and
progress, growth and stability, funding and personnel resources, product quality, software development
performance, and technical adequacy shall be described, as well as how each measure will be used to
support its objective. The technical or management issues to be addressed, the measures to be utilized,
definitions of specified measures and measurement methodologies, and description of how measurement
information will be used in managing the contractor’s program shall be included. The contractor shall
provide a schedule identifying an appropriate starting date and collection frequency for each measure that
maximizes its contribution to risk management.

3.n.1.1 Deliverable product. The contractor shall prepare the software risk control procedures in
contractor format.

3.n.1.2 Schedule. The contractor shall submit the software risk control procedures IAW the schedule
specified in DD Form 1423.

3.n.2 Software risk control records. The contractor shall maintain and use any record or data essential
to the economic and effective operation of his software development and maintenance program. These
records shall be available for review by Government personnel and copies of individual records shall be
furnished to the Government as specified in paragraph 3.n.2./.

3.n.2.1 Deliverable product. The contractor shall provide the data comprising the software measures
identified in paragraph 3.n./ in contractor format.

3.n.2.2 Schedule. The contractor shall submit software risk control records IAW the schedule specified
in DD Form 1423.

Section L - Instructions, conditions, and notices to offerors

Understanding of software development process and software risk measures. The offeror shall
demonstrate a thorough understanding of the technical and program management approaches for building
and maintaining quality software for the XYZ program. In doing so, the identification and constructive
use of appropriate objective measurements in assessing and ensuring software product and process quality
should be addressed. It should be noted that for each work area the offeror shall propose what guidance
document (e.g. military or non-military standard or specification and/or contractor generated guidance)
will be followed in performing the effort.

Past performance. The offeror shall demonstrate that experience is resident to permit accomplishing the
required software development and maintenance effort without a learning and education period (other than
particulars on the specific programs or problems involved). This shall be done by describing past work
of similar or identical nature in such a manner that an evaluation can be made on the relevance of this
experience to the requirements of this solicitation. The offeror shall select three to five contracts which
may be from contracts with Federal, State or local Government or from contracts with private firms, by
which to demonstrate it’s past performance. These contracts shall, as nearly as possible, satisfy the
following criteria:

a. The past performance information should be relevant and comparable, in scope, domain, and
complexity, to the work being performed under the contract.

b. Demonstrate the application and use of software measures or metrics as successful risk reduction factors
in performing the past effort. Applicable guidance documents used in developing or administering a
software metrics program shall be identified. Guidance that has proved useful in the past can be found
in DA Pamphlet 73-7, Army Software Test and Evaluation Guidelines.

Section M - Evaluation factors for award

The past performance of all technically acceptable proposals will be considered.

Figure B-2. Sample metrics paragraphs

DA PAM 73-7 « 25 July 1997




Appendix C The total number of dollars which was actually spent for the work
Metrics Data Collection Templates done on the CSCI as of this reporting period.

C-1. General

This appendix contains sample templates for uniform collection of . . .
the metrics described in chapter 10 of this pamphlet. The needs angne type Of data recor_d is used to descrlbc_e _schedule metric da;a.
resources of each program will determine the precise data submis- or each mllestone,_ deliverable, event or activity, a schedule metric
sion start times, reporting frequency and data elements for eadpart]adrfcord gor&talns thhe foII.owmbgi |gf02rm_?lz|on. Thc? fO”T‘at f?r
metric. The templates can be tailored or used as-is, in conjunctiorScnedule metric data is shown in table C—2. The record consists o

with appendix B. data elements:

a. DATA_DATE - The date associated with the values of the
C-2. Organization remaining data elements in the record. That is, the date when this
A template is provided for each metric described in chapter 10.data was current.
Templates consist of one or more records. Each data element in @ . SYSTEM_NAME - Name of the system to which this data
metric record is identified with a capitalized mnemonic to simplify applies. B
cross referencing between its text definition and format description. c. BUILD_ID - Build, block or version identifier to which this

C-3. Cost metric template data applies. ] )

One type of data record is used to describe cost metric data. For d- CSCI_NAME - The Computer Software Configuration Item

each activity type, a cost metric data record contains the following (CSCI) name to which the data applies, if any. This field should not

information. The format for cost metric data is shown in table C—1. contain a value when reporting non-CSCl specific events.

The record consists of data elements: e. EVENT_TYPE - The kind of event that categorizes
a. DATA_DATE - The date associated with the values of the EVENT_NAME. Examples are SW DEV ACTIVITY, DOCT

remaining data elements in the record. That is, the date when thiDELIV, FORMAL REVIEW, representing software development

C-4. Schedule metric template

data was current. activity, documentation delivery, and formal review.
b. SYSTEM_NAME - Name of the system to which this data  f EVENT_NAME - The name of the milestone, deliverable,
applies. event or activity this record describes. Examples of events are for-
¢. BUILD_ID - Build, block or version identifier to which this  mal system reviews, testing events, and software data product deliv-
data applies. eries. Specific examples are SW REQTS ANAL, CSCI QUAL

d. CSCI_NAME - The Computer Software Configuration Item TESTG, CSCI/HWCI INTEG, PCA, SRS DRAFT representing soft-
(CSCI) name to which the data applies. No value is required for thisyare development activities: software requirements analysis, CSCI
field when reporting system/project level costs. ) qualification testing and CSCI/HWCI integration and testing; physi-

& ACTIVITY_TYPE - The type of effort or product associated ¢4 configuration audit and software requirements specification
with the collected data. Examples of activity types for CSCI level delivery.
reporting and system level reporting are given in chapter 10 of DA g. PLAN_START DATE - The date on which the event is
Pam 73-7. : - -

f. BCWS - Budgeted cost of work scheduled (cumulative tBIanned to start. ) )
date). The total number of dollars that had been budgeted for the N- PLAN_END_DATE - The date on which the event is planned
work scheduled to be accomplished for the CSCI as of this reporting!® be completed.
period. i. ACTUAL_START_DATE - The date the event actually began.

g. BCWP - Budgeted cost of work performed (cumulative to j. ACTUAL_END_DATE - The date the event actually
date). The total number of dollars budgeted for the work actually completed.
performed on the CSCI as of this reporting period.

h. ACWP - Actual cost of work performed (cumulative to date).

Table C-1

Cost metric data record format

Data element Name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date

SYSTEM_NAME C 20

BUILD_ID C 15

CSCI_NAME C 15

ACTIVITY_TYPE C 15

BCWS N 12 2 Dollars 0.00 999999999.99

BCWP N 12 2 Dollars 0.00 999999999.99

ACWP N 12 2 Dollars 0.00 999999999.99

Note: The following standard definitions apply to all data record format tables in this appendix.

Data Type C (Character) Consists of alphabetic characters, numeric characters, or symbols. An embedded
blank between two non-blank characters is an acceptable character. Note: Numeric characters,
also called numerals, cannot be used directly in mathematical calculations.

N (Numeric) Numerals (0,1,2, ... 9), decimal point or negative sign.
Decimal Number of numerals after the decimal point.
Units Date A legitimate date expressed as MM/DD/YYYY designating month/day/year.

DA PAM 73-7 « 25 July 1997 87



Table C-2
Schedule metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date

SYSTEM_NAME C 20

BUILD_ID Cc 15

CSCI_NAME C 15

EVENT_TYPE C 15

EVENT_NAME C 20

PLAN_START_DATE Cc 10 Date

PLAN_END_DATE C 10 Date

ACTUAL_START_DATE C 10 Date

ACTUAL_END_DATE C 10 Date

C-5. Computer resource utilization (CRU) metric template (8) RESOURCE_CAPACITY - The number of UNITS_O-

a. One type of data record is used to describe computer resourcg& MEASURE that represents the total capacity (100%) of the
utilization metric data. The record may report either hardware re- resource.

source (device) utilization data or software resource allocation data. (9) PCNT_TGT_UPR_BND - The target upper bound utilization

b. In hardware resource utilization reporting, for each computer value for the resource. This is the desired maximum value for this

resource in the system, a CRU metric record contains the fOHOWingresource’s utilization expressed as a percentage of total capacity of
information. The format for utilization data is shown in table C-3. the resource P p g pacity

The record consists of data elements: _ _ A
(1) DATA_DATE - The date associated with the values of the = (10) PCNT_PROJECTED - The projected capacity utilization
remaining data elements in the record. That is, the date when thig/alue for the resource. This is the estimated percentage of maximum

data was current. utilization expected at delivery.
(2) SYSTEM_NAME - Name of the system to which this data  (11) PCNT_ACTUAL - The measured value of resource capacity
applies. utilized during peak operational loading periods expressed as a per-

(3) BUlLD_lD - BU”d, block or version identifier to which this Centage of total Capacity of the resource.

data applies. (12) COMP_TYPE - Identificati
. . - Identification as to whether measurements
4) CSCI_NAME - The Computer Software Configuration ltem - . .
(C(S()ZI) name to which the data F;pplies if any. This f?eld should not were taken on the actual target machine or a software test environ-
: : ment configuration.

contain a value when reporting hardware resource utilization data. . . )
(5) RESOURCE_ID - A unique identifier for the resource. No  C. In software resource allocation reporting, for ea.ch CSClin the
value is required for this field if reporting total CSCI software System, a CRU metric record contains the information in data ele-
allocation data for a single RESOURCE_TYPE. ments (1) through (12) above. The format for utilization data is
(6) RESOURCE_TYPE - The kind of resource represented by shown in table C-3. If reporting CSCI allocations to individual
RESOURCE_ID. Examples are CPU, RAM, I/O channel, disk stor- hardware devices, supply values for both RESOURCE_ID and
age and LAN. RESOURCE_TYPE.
(7) UNITS_OF_MEASURE - The type of measurement units that
the resource’s capacity is expressed in. For example, megabytes or
millions of instructions per second.

Table C-3

CRU metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date

SYSTEM_NAME C 20

BUILD_ID C 15

CSCI_NAME C 15

RESOURCE_ID C 12

RESOURCE_TYPE C 12

UNITS_OF_MEASURE C 12

RESOURCE_CAPACITY N 11 2 *x 0 99999999.99

PCNT_TGT_UPR_BND N 3 0 Percent 0 100

PCNT_PROJECTED N 3 0 Percent 0 100

PCNT_ACTUAL N 3 0 Percent 0 100

COMP_TYPE C 1 * *

Notes:

* Range of values is limited to H, T.

** Express RESOURCE values in UNITS_OF_MEASURE.

C-6. Software Engineering Environment (SEE) metric The format for software engineering environment metric data is

template shown in table C—4. The record consists of data elements:

One type of data record is used to described SEE metric data. For a. DATA_DATE - The date associated with the values of the

each developer on which a software maturity level assessment isemaining data elements in the record. That is, the date when this
performed, a SEE metric record contains the following information. data was current.

88 DA PAM 73-7 « 25 July 1997



b. DEVELOPER_NAME - The name of the developer that was g. KEY_PROCESS_AREA - The SEI key process area (KPA)

evaluated. whose results are reported by this record. See chapter 10 of DA
c. SYSTEM_NAME - Name of the system to which this data Pam 73-7 for a list of applicable KPAs.
applies. h. KPA_RESULT - Key process area KEY_PROCESS_AREA
d. BUILD_ID - Build, block or version identifier to which this  was assessed as satisfactory, unsatisfactory or not rated. Not rated
data applies. means the KPA was not reviewed in this assessment.
e. MATURITY_LEVEL - The overall process maturity level as- i. ASSESSMENT_TYPE - Indicator as to whether the assessment
signed to the developer. was performed by the developer as a self-assessment, the acquirer or
f. MATURITY_DATE - The date the process maturity level was an authorized representative representing the sponsor, or by an inde-
assigned to the developer. pendent third party organization.
Table C-4
SEE metric data record format
Data element name Data type Width Decimal Units Minimum Maximum value
value
DATA_DATE Cc 10 Date
DEVELOPER_NAME C 15
SYSTEM_NAME Cc 20
BUILD_ID C 15
MATURITY_LEVEL N 1 0 1 5
MATURITY_DATE C 10 Date
KEY_PROCESS_AREA C 15 * *
KPA_RESULT C 1 *x *x
ASSESSMENT_TYPE C 6 rorx ok

Notes:

* Range of values is limited to SW CM, SW QA, SW SUB MGT, SW PROJ TRACK, SW PROJ PLAN, REQTS MGT, PEER REVIEW, GROUP COOR, SW PROD ENGR,
INTEG SW MGT, TRAINING PGM, PROCESS DEF, PROCESS FOCUS, QUAL MGT, PROCESS ANAL, PROC CHNG MGT, TECH INNOV, DEFECT PREV.

* Range of values is limited to S, U, N.
" Range of values is limited to SELF, ACQ, INDEP.

C-7. Requirements traceability metric template unit design, code, software test cases and system requirements
a. One type of data record is used to describe requiremernéspectively.

traceability metric data. The record may report either software re- (8) FROM_DOCT_NUM_REQ - The number of FROM-
quirements traceability results or overall requirements traceability poeT TYPE_require_ments allocated to document FROM DOCT.

results. ; ;
: o : . (9) TO_DOCT - The name of the document examined in order to
b. Software requirements traceability reporting. For each CSCI in find the appropriate link to the requirements in FROM_DOCT.

the system, a requirements traceability record contains the following
information. The format for requirements traceability metric data is  (10) TO_DOCT_VER_ID - The configuration identifier assigned
shown in table C-5. The record consists of data elements: to the edition of the TO_DOCT that was examined.

(1) DATA_DATE - The date associated with the values of the  (11) TO_DOCT_TYPE - The type of document or type of re-

remaining data elements in the record. That is, the date when thigjuirements that were examined in the TO_DOCT. See examples in
data was current. item (7).

(2) SYSTEM_NAME - Name of the system to which this data (12) TO_DOCT _NUM_REQ - The number of TO_DOCT TYPE

applies. requi
Cnni L . . . quirements allocated to document TO_DOCT.
dag) a%lélliléz._m Build, block or version identifier to which this (13) TRACE_FROM_TO - The number of requirements in

(4) CSCI_NAME - Name of the Computer Software Configura- FROM_DOCT that were successfully traced into the TO_DOCT.
tion Item (CSCI) to which the data applies, if any. If overall system _ (14) NO_TRACE_FROM_TO - The number of requirements in
or non-CSCI specific documents or requirements are being tracedFROM_DOCT that could not be traced into the TO_DOCT, but
there should be no value in this field. should have been addressed in TO_DOCT.

(5) FROM_DOCT - The name of the document whose require- (15) BACK_TRACE_TO_FROM - The number of requirements
ments were examined in order to them trace forward into ti{f TO_DOCT that were successfully traced backward to the
TO_DOCT.

(6) FROM_DOCT_VER_ID - Th figuration identifi FROM_DOCT

B _ _ID - e configuration identifier as- ) ;
signed to the edition of the FROM_DOCT that was examined. in (.}_g) ggéﬁﬁﬂ?ﬁ%ﬁ?ﬁiﬁ&c; r;§ ?ﬁén?%&fwregg?p ents

(7) FROM_DOCT_TYPE - The type of document or type of = ) - i - )
requirements that were examined in the FROM_DOCT. Examples C: Overall requirements traceability reporting. For each set of
are SW REQTS, IF REQTS, USER REQTS, HW SW DESIGN, Sw non-CSClI specific documents examined, a requirements traceability
UNIT DESIGN, CODE, SW TEST CASES, and SYSTEM REQTS mMmetric record contains the information in data elements (1) through
representing software requirements, interface requirements, user re(3) and (5) through (16). The format for traceability data is shown
quirements, CSCI- wide and CSCI architectural design, softwarein table C-5.

DA PAM 73-7 « 25 July 1997 89



Table C-5
Requirements traceability data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date

SYSTEM_NAME C 20

BUILD_ID Cc 15

CSCI_NAME C 15

FROM_DOCT C 30

FROM_DOCT_VER_ID C 15

FROM_DOCT_TYPE C 15

FROM_DOCT_NUM_REQ N 5 0 0 99999

TO_DOCT Cc 30

TO_DOCT_VER_ID C 15

TO_DOCT_TYPE C 15

TO_DOCT_NUM_REQ N 5 0 0 99999

TRACE_FROM_TO N 5 0 0 99999

NO_TRACE_FROM_TO N 5 0 0 99999

BACK_TRACE_TO_FROM N 5 0 0 99999

NO_BACK_TRACE_TO_FROM N 5 0 0 99999

C-8. Requirements stability metric template i. USER_MODS_AFFECT - The number of software units in the

One type of data record is used to describe requirements stabilityCSCI which are affected in this reporting period by approved soft-
metric data. For each CSCI in the system, a requirements stabilityware requirements-related ECP-Ss submitted by the user.

metric record cogl_tlgins the fgllow_ing hinfornjatiogl. The forrr]nat ford j. DEV_ECP - The number of ECP-Ss submitted in this reporting
requirements stability metric data is shown in table C-6. The recordpariog by the developer against software requirements.

consists of data_elements: k. DEV_SLOC - The number of source lines of code affected in

a. DATA_DATE - The date associated with the values of the hi ) iod b d softw ; lated
remaining data elements in the record. That is, the date when thidh!S_reporting period by approved software requirements relate

data was current. ECP-Ss that were submitted by the developer. Source lines of code
b. SYSTEM_NAME - Name of the system to which this data &€ non-blank, non-comment, executable and data statements.
applies. |. DEV_MODS_AFFECT - The number of software units in the
c. BUILD_ID - Build, block or version identifier to which this ~ CSCI which are affected in this reporting period by approved soft-
data applies. ware requirements-related ECP-Ss submitted by the developer.
d. CSCI_NAME - The Computer Software Configuration Item  m. SLOC - The number of source lines of code in the CSCI.
(CSCI) name to which the data applies. Source lines of code are non-blank, non-comment, executable and
e. TOT_REQ_DISCREP - The total number of software require- gata statements.
ments discrepancies detected to date (cumulative). n. NUM_SRS_REQ - The number of Software Requirements

f. TOT_CLOSED_DISCREP - The total number of software re- ?pecification (SRS) requirements for this CSCI
irements discrepancies to date (cumulative) which are closed as o X .
aut ! panct (cumuilative) whi 0. NUM_SRS REQ _ADD - The number of SRS requirements

this reporting period. X . ) .
g. USER_ECP - The number of Engineering Change Proposals-2dded in this reporting period due to approved ECP-Ss.

Software (ECP-Ss) submitted in this reporting period by the user P. NUM_SRS_REQ_MOD - The number of SRS requirements
against software requirements. modified in this reporting period due to approved ECP-Ss.

h. USER_SLOC - The number of source lines of code affected in g. NUM_SRS_REQ_DEL - The number of SRS requirements
this reporting period by approved software requirements relateddeleted in this reporting period due to approved ECP-Ss.
ECP-Ss that were submitted by the user. Source lines of code are
non-blank, non-comment, executable and data statements.

Table C-6

Requirements stability metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date

SYSTEM_NAME C 20

BUILD_ID C 15

CSCI_NAME C 15

TOT_REQ_DISCREP N 5 0 0 99999

TOT_CLOSED_DISCREP N 5 0 0 99999

USER_ECP N 5 0 0 99999

USER_SLOC N 7 0 0 9999999

USER_MODS_AFFECT N 5 0 0 99999

DEV_ECP N 5 0 0 99999

DEV_SLOC N 7 0 0 9999999

DEV_MODS_AFFECT N 5 0 0 99999

SLOC N 7 0 0 9999999

NUM_SRS_REQ N 5 0 0 99999

NUM_SRS_REQ_ADD N 5 0 0 99999

NUM_SRS_REQ_MOD N 5 0 0 99999

NUM_SRS_REQ_DEL N 5 0 0 99999

90 DA PAM 73-7 « 25 July 1997



C-9. Design stability metric template e. VERSION_ID - The configuration control version identifica-
One type of data record is used to describe design stability metriction of the CSCI that is being reported.

data. For each CSCI in each version delivered during this reporting  compP DATE - The planned date that VERSION_ID will be
period, a design stability metric record contains the following infor- completed._ -

Qfgoqfhzh?e?g:gaicf)?{sg?s Igo? (sj;f;\tta)fllgerrr:]%trr]lé'data is shown in table g. TOTMOD_FINAL - The total number of software units that
a. DATA_DATE - The date associated with the values of the @€ Planned to comprise the final delivery of the CSCI.
remaining data elements in the record. That is, the date when this h. TOTMOD_N_DESIGN - The number of units comprising the

data was current. CSCI delivered in VERSION_ID.

b. SYSTEM_NAME - Name of the system to which this data  i. NUM_MOD_CHANGED - The number of units in which de-
applies. _ S _ ) sign related changes were made since the last delivery of the CSCI.
da(;a BaL;LLllzng - Build, block or version identifier to which this J NUM_MOD_ADDED - The number of units that were added

to the CSCI since the last delivery.

k. NUM_MOD_DELETED - The number of units that were de-
leted from the CSCI since the last delivery.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies.

Table C-7

Design stability metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date

SYSTEM_NAME C 20

BUILD_ID C 15

CSCI_NAME C 15

VERSION_ID C 15

COMP_DATE C 10 Date

TOTMOD_FINAL N 5 0 0 99999

TOTMOD_N_DESIGN N 5 0 0 99999

NUM_MOD_CHANGED N 5 0 0 99999

NUM_MOD_ADDED N 5 0 0 99999

NUM_MOD_DELETED N 5 0 0 99999

C-10. Complexity metric template h. CYCLOMATIC_COMPLEX - The computed value of

One type of data record is used to describe complexity metric dataMcCabe’s cyclomatic complexity for the unit.

For each software unit in the system that has been added, modified, ; HaAL STEAD VOCAB - The computed value of Halstead's vo-
or deleted, a complexity metric record contains the following infor- cabulary term for the unit.

mation. The format for complexity metric data is shown in table .

C-8. The record consists of data elements: J. HALSTEAD_PGM_LENGTH - The_computed value of
a. DATA _DATE - The date associated with the values of the Halstead’s program length term for the unit.

remaining data elements in the record. That is, the date when this k. HALSTEAD_VOLUME - The computed value of Halstead's

data was current. program volume term for the unit.

b. SYSTEM_NAME - Name of the system to which this data  |. CTRL_PATH_CROSS - The total number of occurrences in
applies. the unit where control paths cross.

¢. BUILD_ID - Build, block or version identifier to which this m. SLOC - The total number of source lines of code in the unit.
data applies. Source lines of code are non-blank, non-comment, executable and

d. CSCI_NAME - The Computer Software Configuration Item
(CSCIl) name to which the data applies. data statements.

e. UNIT_NAME - The name of the software unit to which the  N- PCNT_COMMENT - The computed percentage of comment
data app“gs_ lines in the unit.

f. DELETED - An indicator that this unit has been deleted from 0. PDL_OR_CODE - An indicator as to whether the complexity
the CSCI. Acceptable values are Y (deleted) or N (unit is part of thefor this unit was computed on its Program Design Language (PDL)

system configuration). or source code representation.
g. LANGUAGE - The programming language the software unit
is written in.
Table C-8
Complexity metric data record format
Data element name Data type Width Decimal Units Minimum Maximum value
value
DATA_DATE C 10 Date
SYSTEM_NAME C 20
BUILD_ID C 15
CSCI_NAME C 15
UNIT_NAME C 15
DELETED C 1 * *
LANGUAGE C 12
CYCLOMATIC_COMPLEX N 5 0 0 99999
HALSTEAD_VOCAB N 5 0 0 99999

DA PAM 73-7 « 25 July 1997 91



Table C-8
Complexity metric data record format—Continued

Data element name Data type Width Decimal Units Minimum Maximum value
value

HALSTEAD_PGM_LENGTH N 5 0 0 99999

HALSTEAD_VOLUME N 8 2 0.00 99999.99

CTRL_PATH_CROSS N 5 0 0 99999

SLOC N 5 0 0 99999

PCNT_COMMENT N 3 0 Percent 0 100

PDL_OR_CODE C 4 *x *x

Notes:

* Range of values is limited to Y, N.

* Range of values is limited to PDL, CODE.

C-11. Breadth of testing metric template f. REQTS_PRIORITY - Level of priority (criticality) assigned to

One type of data record is used to describe breadth of testing metrighe requirements, if any.
data. For each CSCI in the system, a breadih of lesting melfic g NUM_REQTS - The total number of REQTS_TYPE require-
record contains the following information. The format for breadth of ", ~0cated to the CSCI under development.

testing metric data is shown in table C-9. The record consists of
data %Iements: h. TOT_TESTED_REQTS - The total number of REQTS_TYPE

a. DATA DATE - The date associated with the values of the reduirements for the CSCI that have been tested using approved test
remaining data elements in the record. That is, the date when thi$ases.

data was current. i. TOT_PASSED_REQTS - The total number of REQTS_TYPE
b. SYSTEM_NAME - Name of the system to which this data requirements for the CSCI that have been successfully demonstrated
applies. through testing.
c. BUILD_ID - Build, block or version identifier to which this ji. TEST_ID - The type of testing or a test event identifier with
data applies. which this data is associated. Examples of TEST_ID are DT (Gov-

d. CSCI_NAME - The Computer Software Configuration 1tem ornment Developmental Test), OT (Operational Test) or CSCI
(CSCIl) name to which the data applies. UAL (CSCI qualification)

e. REQTS_TYPE - Indicator as to whether the requiremen% '
reported in this record are SRS requirements, IRS requirements or
UFD requirements.

Table C-9

Breadth of testing metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE Cc 10 Date

SYSTEM_NAME C 20

BUILD_ID Cc 15

CSCI_NAME C 15

REQTS_TYPE Cc 12 * *

REQTS_PRIORITY N 5 0 0 5

NUM_REQTS N 5 0 0 99999

TOT_TESTED_REQTS N 5 0 0 99999

TOT_PASSED_REQTS N 5 0 0 99999

TEST_ID C 12

Notes:

* Range of values is limited to SRS, IRS, UFD.

C-12. Depth of testing metric template e. UNIT_NAME - The name of the software unit to which the

One type of data record is used to describe depth of testing metriclata applies.

data. For each software unit in the system that has been added, f. DELETED - An indicator that this unit has been deleted from

modified, tested, or deleted since the last reporting period, a deptithe CSCI. Acceptable values are Y (deleted) or N (unit is part of the

of testing metric record contains the following information. The system configuration).

format for depth of testing metric data is shown in table C-10. The g. DEPTH_MEASURE - Designates to which depth attribute the

record consists of data elements: remaining data elements of the record apply. Acceptable values are
a. DATA _DATE - The date associated with the values of the PATH, STATEMENT, INPUT, DECISION PNT corresponding to

remaining data elements in the record. That is, the date when thigaths, statements, input instances and decision points, respectively.

data was current. h. TOT_IN_UNIT - The total number of attributes of type
b. SYSTEM_NAME - Name of the system to which this data DEPTH_MEASURE in the unit being reported.
applies. i. TOT_TESTED - The total number of attributes of type

c. BUILD_ID - Build, block or version identifier to which this DEPTH_MEASURE in the unit that have been tested using ap-
data applies. prgvidoggsltbgsgéb Th | number of attrib f
) ' ; j- _ - e total number of attributes of type
(C%C(I:)Srcl:;ﬁq'\éAmehiIr? ethce:o(?;ﬁ);tir S”c;f;ware Configuration Item DEPTH_MEASURE in the unit that have been successfully tested
PplEs. in accordance with the measure’s criteria stated in chapter 10 of DA
Pam 73-7.

92 DA PAM 73-7 « 25 July 1997



Table C-10
Depth of testing metric data record

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date

SYSTEM_NAME C 20

BUILD_ID Cc 15

CSCI_NAME C 15

UNIT_NAME C 15

DELETED C 1 * *

DEPTH_MEASURE C 12 *x *x

TOT_IN_UNIT N 5 0 0 99999

TOT_TESTED N 5 0 0 99999

TOT_PASSED N 5 0 0 99999

Notes:
* Range of values is limited to Y, N.
* Range of values is limited to PATH, STATEMENT, INPUT, DECISION PNT.

C-13. Fault profiles metric template f. FAULT_CATEGORY - The category of faults described by
One type of data record is used to describe fault profiles metricthe remaining data elements in the record.

data. For ﬁa"fh”CSC' in ]fhe system, a f";‘“'t pro{"esf metric ﬁcord g. TOT_FLTS_DETECTED - The total number of faults with
contains the following information. The format for fault profiles priority value FAULT_PRIORITY detected to date.

metric data is shown in table C-11. The record consists of data . .
elements: h. TOT_FLTS_CLOSED - The total number of faults with prior-

a. DATA DATE - The date associated with the values of the ity value FAULT_PRIORITY that have been closed/resolved to
remaining data elements in the record. That is, the date when thiglate.

data was current. i. AVGOPEN_AGE - The average number of days a currently
b. SYSTEM_NAME - Name of the system to which this data open fault with priority value FAULT_PRIORITY has remained
applies. open.
c. BUILD_ID - Build, block or version identifier to which this j. AVGCLOSE_AGE - The average number of days it took to
data applies. close a priority FAULT_PRIORITY fault.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCIl) name to which the data applies.

e. FAULT_PRIORITY - The priority level of faults described by
the remaining data elements in the record.

k. AVG_AGE - The average age, in days, of a priority
FAULT_PRIORITY fault (both open and closed).

Table C-11

Fault profiles metric record metric data format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date

SYSTEM_NAME C 20

BUILD_ID C 15

CSCI_NAME C 15

FAULT_PRIORITY N 5 0 0 5

FAULT_CATEGORY C 15

TOT_FLTS_DETECTED N 6 0 0 999999

TOT_FLTS_CLOSED N 6 0 0 999999

AVGOPEN_AGE N 5 0 Days 0 99999

AVGCLOSE_AGE N 5 0 Days 0 99999

AVG_AGE N 5 0 Days 0 99999

C-14. Reliability metric template which this data is associated. Examples of TEST_ID are RGT (Reli-

One type of data record is used to describe reliability metric data.ability Growth Test), DT (Government Developmental Test), or OT
For each system test event for which system/software reliability data(Operational Test). _

is measured, a reliability metric record contains the following infor- € MEASURED_FAIL_RATE - The computed failure rate of the
mation. The format for reliability metric data is shown in table SOftware as measured in testing expressed in failures per month.
C—12. The record consists of data elements: f. PROJECTED_FAIL_RATE - The projected failure rate of the

a. DATA_DATE - The date associated with the values of the Zﬂg\lly\;girs rz;)(;dteklle reporting period as calculated by the reliability
remaining data elements in the record. That is, the date when this g. RELY_MODEL - The name of the analytical model used to

data was current. calculate the PROJECTED_FAILURE_RATE.

b. SYSTEM_NAME - Name of the system to which this data  h. FAIL_RATE_OBJECTIVE - The desired goal of the accepta-
applies. ble number of software failures.

c. BUILD_ID - Build, block or version identifier to which this i. SYS_REQ_MTBF - The required/specified value of mean time
data applies. between mission failures caused by system hardware or software

d. TEST_ID - The type of testing or a test event identifier with ?g%'gﬁ;r‘]’gwh the value measured during the test is compared for

DA PAM 73-7 « 25 July 1997 93



j. PEST_SYS_MTBF - The computed point estimate of mean n. REQ_MEAN_RESTOR - The required/specified value of
time between mission failures caused by system hardware or softmean time to restore the system to operational status.
ware as measured during the test event (field TEST_ID). 0. REQ_MEDN_RESTOR - The required/specified value of
k. LCB_SYS_MTBF - The calculated 80% lower confidencenedian time to restore the system to operational status.
bound value of mean time between mission failures caused by p. REQ_MAX95 RESTOR - The required/specified maximum
system hardware or software as measured during the test event95th percentile value of time to restore the system to operational
|. PEST_SW_MTBF - The computed point estimate of mean time status.
between mission failures caused by software as measured during the g. MEAN_RESTOR_SYS - The computed mean time to restore
test event. the system to operational condition.
m. LCB_SW_MTBF - The calculated 80% lower confidence r. MEDN_RESTOR_SYS - The computed median time to restore
bound value of mean time between mission failures caused bythe system to operational condition.
software as measured during the test event. s. MAX95_RESTOR_SYS - The computed maximum 95th per-
centile value of time to restore the system to operational condition.

Table C-12

Reliability metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date

SYSTEM_NAME C 20

BUILD_ID C 15

TEST_ID C 12

MEASURED_FAIL_RATE N 8 2 Fpm * 0.00 99999.99

PROJECTED_FAIL_RATE N 8 2 Fpm 0.00 99999.99

RELY_MODEL C 15

FAIL_RATE_OBJECTIVE N 8 2 Fpm 0.00 99999.99

SYS_REQ_MTBF N 8 2 Hours 0.00 99999.99

PEST_SYS_MTBF N 8 2 Hours 0.00 99999.99

LCB_SYS _MTBF N 8 2 Hours 0.00 99999.99

PEST_SW_MTBF N 8 2 Hours 0.00 99999.99

LCB_SW_MTBF N 8 2 Hours 0.00 99999.99

REQ_MEAN_RESTOR N 8 2 Hours 0.00 99999.99

REQ_MEDN_RESTOR N 8 2 Hours 0.00 99999.99

REQ_MAX95 RESTOR N 8 2 Hours 0.00 99999.99

MEAN_RESTOR_SYS N 8 2 Hours 0.00 99999.99

MEDN_RESTOR_SYS N 8 2 Hours 0.00 99999.99

MAX95_RESTOR_SYS N 8 2 Hours 0.00 99999.99

Notes:

* Fpm - Failures per month.

C-15. Manpower metric template f. EXPERIENCE_LEVEL - The level of experience in the

One type of data record is used to describe manpower metric data. ABOR_CATEGORY to which this data applies.
For _each labor category and experience Ievel_reported, a manpower o NyM_STAFF_PLANNED - The number of personnel planned
metric record contains the following information. The format for : ; :
e . ; . . to be on staff in the reporting period.
reliability metric data is shown in table C-13. The record consists of
data elements: h. NUM_STAFF_ACTUAL - The number of personnel actually
a. DATA_DATE - The date associated with the values of the ON staff in the reporting period. _
remaining data elements in the record. That is, the date when this i. NUM_STAFF_LOSS - The number of unplanned losses in

data was current. personnel that occurred in the reporting period.
b. SYSTEM_NAME - Name of the system to which this data  j TOT_HOURS_PLANNED - The total number of labor hours
applies. (cumulative to date) that are planned to be expended by the end of

¢. BUILD_ID - Build, block or version identifier to which this  the reporting period.

data applies. )
d. CSCI_NAME - The Computer Software Configuration Item k. TOT—HOURS—ACTUAL The total number OT labor hours_
(cumulative to date) that were actually expended in the reporting

(CSCI) name to which the data applies. iod
e. LABOR_CATEGORY - The name of the labor category to period.
which this data applies.

Table C-13

Manpower metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date

SYSTEM_NAME C 20

BUILD_ID C 15

CSCI_NAME Cc 15

LABOR_CATEGORY C 20

EXPERIENCE_LEVEL C 12

NUM_STAFF_PLANNED N 5 0 0 99999

NUM_STAFF_ACTUAL N 5 0 0 99999

94 DA PAM 73-7 « 25 July 1997



Table C-13
Manpower metric data record format—Continued

Data element name Data type Width Decimal Units Minimum Maximum value
value

NUM_STAFF_LOSS N 5 0 0 99999

TOT_HOURS_PLANNED N 8 0 Hours 0 99999999

TOT_HOURS_ACTUAL N 8 0 Hours 0 99999999

C-16. Development progress metric template

g. TOT_UNIT_TESTED_PLAN - The total number of units (cu-

One type of data record is used to describe development progresgulative to date) that are planned to have completed implementation
metric data. For each CSCI in the system a development progresgngd unit testing by the end of the reporting period.

metric record contains the following information. The format for

development progress metric data is shown in table C-14. The

record consists of data elements:

a. DATA_DATE - The date associated with the values of the

h. TOT_UNIT_INTEG_PLAN - The total number of units (cu-
mulative to date) that are planned to have completed unit integration
and testing by the end of the reporting period.

remaining data elements in the record. That is, the date when this - TOT_DESIGNED_ACTUAL - The total number of units (cu-

data was current.

b. SYSTEM_NAME - Name of the system to which this data
applies.

c. BUILD_ID - Build, block or version identifier to which this
data applies.

d. CSCI_NAME - The Computer Software Configuration Item
(CSCI) name to which the data applies.

e. TOT_UNITS_FINAL - The total number of software units
planned for the final delivery of this CSCI in BUILD_ID.

f. TOT_DESIGNED_PLAN - The total number of units (cumula-

mulative to date) that completed design through the current report-
ing period.

j- TOT_UNIT_TESTED_ACTUAL - The total number of units
(cumulative to date) that completed implementation and unit testing
through the current reporting period.

k. TOT_UNIT_INTEG_ACTUAL - The total number of units
(cumulative to date) that completed unit integration and testing
through the current reporting period.

tive to date) that are planned to have completed the design activity

by the end of the reporting period.

Table C-14

Development progress metric data record format

Data element name Data type Width Decimal Units Minimum Maximum value
value

DATA_DATE C 10 Date

SYSTEM_NAME C 20

BUILD_ID C 15

CSCI_NAME C 15

TOT_UNITS_FINAL N 5 0 0 99999

TOT_DESIGNED_PLAN N 5 0 0 99999

TOT_UNIT_TESTED_PLAN N 5 0 0 99999

TOT_UNIT_INTEG_PLAN N 5 0 0 99999

TOT_DESIGNED_ACTUAL N 5 0 0 99999

TOT_UNIT_TESTED_ACTUAL N 5 0 0 99999

TOT_UNIT_INTEG_ACTUAL N 5 0 0 99999

DA PAM 73-7 « 25 July 1997

95



Glossary

Section |
Abbreviations

ADP
automatic data processing

AMC
Army Materiel Command

AMCCOM
Armament, Munitions and Chemical
Command

AMSAA
Army Materiel Systems Analysis Activity

AR
Army regulation

BAS
battlefield automated system

BOIP
basis of issue plan

CCB
configuration control board

CDA
Central Design Activity

CE
continuous evaluation

CECOM
Communications-Electronics Command

Cl
configuration item

CM
configuration management

COM
computer operation manual

CPT
comparison test

CPU
central processing unit

CsC
computer software component

CSTA
Combat Systems Test Activity

DA
Department of the Army

DID
data item description

DOD
Department of Defense

DODD
Department of Defense directive

96

DODI
Department of Defense instruction

DS
database specification

DT
developmental test

DTP
detailed test plan

ECP
engineering change proposal

EDP
event design plan

EM
end user mannual

FDTE
force development testing and
experimentation

/0
input/output

1AW
in accordance with

IEP
independent evaluation plan

IER
independent evaluation report

ILSP
integrated logistic support plan

INSCOM
Intelligence and Security Command

IPT
integrated product team

IP
implementation procedures

IPR
in-process review

ISO
International Organization for
Standardization

ISSC
Information Systems Support Command

JCS
Joint Chiefs of Staff

LOC
lines of code

MACOM
major Army command

MDR
milestone decision review

DA PAM 73-7 « 25 July 1997

MM
maintenance manual

MOA
Memorandum of Agreement

MOE(s)
measure of effectiveness

MOP
measure of performance

MOT
multi-service operational test

MP
management plan

MS
milestone

MSC
major subordinate command

MTBF
mean-time-between-failure

MTTR
mean-time-to-repair

OEC
Operational Evaluation Command

oSsuT
on-site user test

oT
operational test

PA
proponent agency

PCA
physical configuration audit

PCR
problem/change report

PEO
program executive officer

PM
program/project/product manager

PT
test plan

QA
quality assurance

QQPRI
qualitative and quantitative personnel require-
ments information

RAM
reliability, availability, maintainability ran-
dom access memory

RFP
request for proposal



RT
test analysis report

SA
system assessment

SAT
software acceptance test

SCM
software configuration management

SCP
software change package

SDC
Software Development Center

SDD

software design description, software desigfraining and Doctrine Command

document

SDF
software development file

SDP
software development plan

SEP
system evaluation plan

SIP
software installation plan

SIT
system integration test

SOwW
statement of work

SPM
software programmer’s manual

SPR
system post deployment review

SPS
software product specification

SQAP
software quality assurance plan

SQT
software qualification test

SS
system/subsystem specification

SSA
software support activity

SSEB
source selection evaluation board

SSS
system/subsystem specification

SUM
software user manual

TACOM Benchmark test files (BMTF)

Tank Automotive Command A database of known content against which a
controlled set of inputs is processed and from

TDP which output results may be predicted. This

test design plan term is used in reference to a test environ-
ment and pre-established test cases/data.

TECOM
Test and Evaluation Command CASE tools

Computer aided software engineering
TFT (CASE) tools are systems for building sys-

technical feasibility testing tems; they automate elements of the require-
ments analysis, design, development or test
TIWG process.
Test Integration Working Group

Code walk-through
TR The process of assessing the level of software
technical report performance and design structure that re-
quires the developer to demonstrate the capa-
bilities of the software to technical,
functional, and user representatives.

TRADOC

UFD _ o Computer resources
users’ functional description The totality of computer personnel, documen-
tation, services, and supplies applied to a

WBS given effort. This includes hardware, soft-

work breakdown structure ware, services, personnel, documentation and
) supplies.

Section I

Terms Computer resource life cycle management

) plan (CRLCMP)
Allocated baseline ~ The primary Government planning document
The initially approved documentation dgsed at all decision levels for assessing the
scribing an item’s functional, interoperability, adequacy of the overall computer resources
and interface characteristics that are allocatefanagement efforts throughout a system’s

from those of a system or a higher levejife. (Reference DA Pamphlet 70-3)
configuration item, interface requirements

with interfacing configuration items, addtomputer resources IPT

tional design constraints, and the verificatioften established by the material developer

required to demonstrate the achievement effter Milestone | for each AR 70—1 system to

those specified characteristics. (Refereaigein the management of system computer

MIL-STD-973) resources. A computer resources IPT assists
in insuring compliance with policy, proce-

Army technical architecture (ATA) dures, plans and standards established for

The approved reference that identifies mancomputer resources. (Reference AR 73-1)

dated and recommended standards regarding

information management processes and inEomputer software configuration item

plementations for systems that perform com(CSCI)

puting and communications functions for thea configuration item that is software. (Refer-

Army. The ATA incorporates elements of theence MIL-STD-973)

DOD’s technical architecture framework for

information management (TAFIM) as well asConfiguration item (CI)

other DOD acquisition and standardizatidn aggregation of hardware, software, or

initiatives. both that satisfies an end use function and is
designated by the Government for separate

Automated information system (AIS) configuration management. (Reference MIL-

A combination of information, computer andSTD-973)

telecommunications resources and other in-

formation technology and personnel r@enfiguration management

sources that collects, records, procesgediscipline applying technical and adminis-

stores, communicates, retrieves, and displaysative direction and surveillance to (a) iden-

information. (Reference AR 25-3) tify and document the functional and physical
characteristics of a configuration item, (b)

Baseline control changes to those characteristics, and

Configuration documentation formally desig-(c) record and report change processing and

nated and fixed at a specific time during amplementation status. (Reference MIL-STD-

configuration item’s life cycle. Configuration 973)

baselines, plus approved changes from those

baselines constitute the current configuratiorCycle/system test

(Reference MIL-STD-973) The final phase of developer information sys-
tems testing which involves the testing of

DA PAM 73-7 « 25 July 1997 97



modules/programs/cycles which are intke achievement of those specified characteMateriel system computer resources

grated into the total system. istics. (Reference MIL-STD-973) (MSCR)
) ) _ ) Computer resources acquired for use as inte-
Developer tests Functional configuration audit (FCA) gral parts of weapons; command and control;

Testing, modeling, and experimentation conA formal examination of the functional char-communications; intelligence and other tacti-
ducted by the system developer. Formal tes@steristics of a configuration item, prior tocal or strategic systems and their support sys-
normally involve system level integration and@cceptance, to verify that the item h@ens. The term also includes all computer
certification by the developer with formafhieved the requirements specified in résources associated with specific program
Government monitoring. Informal tests ifynctional and allocated configuration docudevelopmental T&E, operational testing, and

volve lower level code and unit developmentnentation. (Reference MIL-STD-973) post deployment software support including
with internal integration between system ele- _ o weapon system training devices, automatic
ments. Experimentation includes a wide varitiardware configuration item (HWCI) test equipment, land based test sites, and sys-

ety of tests, models, development technique configuration item that is hardware. (Reftem integration and test environments.
and simulations used to validate design corfrénce MIL-STD-973)

cepts and theories. . Metric
P Implementation procedures (IP) _ A quantitative value, procedure, methodolo-
A document which provides information togy, and/or technique which allows one the

_ll?ée;/;logggﬂ;alcgenséﬁcgg)by an organizatiofSe"s and data processing personnel to instaility to measure various aspects and char-
- - the AIS and achieve operational status. acteristics of software.

independent of the developer(s) in order to
validate total system conformance to technifgependent verification and validation Nondevelopment item (NDI)

cal and functional specifications and ensurgy gy A generic term that covers material available
the system is ready for formal or limited usesystematic evaluation performed by ggm a variety of sources with litle or no

testing. Formal tests focus primarily on totakgency that is not responsible for developingevelopment effort required by the Govern-
systems integration. the product or performing the activity beingment. NDI may be referred to as reusable,

evaluated. (Reference MIL-STD-973) Government furnished, or commonly availa-

Developmen@ tools ble software, hardware or total systems,
Products which are necessary to prepare, tagterface depending upon the source. (Reference MIL-

and evaluate software units currently undem software development, a reIationsI’ng_gn)

development. among two or more entities (such as CSCI-
. CSCI, CSCI-HWCI, CSCl-user, or softwarepgrallel testing
Driver unit-software unit) in which the entitiegesting that demonstrates whether or not two
Software which controls a hardware devicghare, provide, or exchange data. (Referengersions of the same application are consis-
or the execution of other programs. MIL-STD-498) tent, or two systems performing the same
) ) function.
Dynamic analysis Integrated product team (IPT)

A test method that involves executing or simA flexible and dynamic ad hoc group whosephysical configuration audit (PCA)
ulating a product under development. Errorparticipants come from all necessary funcThe formal examination of the “ as-built”
are detected by analyzing the response of tfienal organizations in order to plan, managesonfiguration of a configuration item against

product to sets of input data. implement and resolve a particular acquisiits technical documentation to establish or
tion program issue. (Reference DODD 5000yerify the configuration item’s product base-

Emulation 1, DOD 5000.2-R) line. (Reference MIL-STD-973)

An interpretation similar to simulation, how- )

ever, the interpretation is done through hardhterim change package (ICP) Program

ware or microcode or the process of usin§ Software modification release of ECP-S\ separately compilable, structural (closed)

software or peripherals to make one set gvhich, because of urgency, regulatory get of instructions most precisely associated

hardware operate like another. quirement or special need, must be providegith early generations of computers. Synony-

before the availability of the next schedulednous with computer program.

Engineering change proposal - software Software Change Package. o _

(ECP-S) - Qua!lflcatlon testing

A term which includes both a proposed ennteroperability _ Testing performed to demonstrate to the con-

gineering change and the documentation 2%1: .geb'“tg Qgesytsoterrllz, ucrg;s,t ore fq(l;gesf toorttt‘cung _"?}9%”‘3)’ that a CSCI(gr fsystem Tﬁfts
i i i vide services to and accept services frofies specified requirements. (Reference -

which the change is described and suggest Sther systems, units or forces and to use th?TDE498) a

DA Form 5005-R is used to document procg ioos "t enable them to operate effectivel
posed changes to software baselines and fg P y

) X . gether. Recovery/reconfiguration testing
ECX:'?DtEd bhalls;elglse gocumentatlon. (Referen ¢ Testing that verifies the recovery process and
amphlet 25-6) Issues and criteria component parts’ effectiveness. It validates

Issues are questions, the answers to whitchat enough backup data is preserved and

Firmware permit the overall system evaluation. Criteriastored in a secure location.

A combination of hardware device and comzee the quantitative or qualitative standards

puter instructions or computer data that 'y which issues are evaluated. Regression testing

side as read-only software on the hardware Testing of a computer program and/or system

dewce. The software cannot be readily modit eft-of-baseline (LOB) to assure correct performance after changes

fied under program control. The manual and automated processes of exere made to code that previously performed
) ] tracting selected data and reducing them teorrectly. Includes testing or retesting those

Functional baseline input file and transaction formats acceptablareas or aspects of a system which will or

The initially approved documentation dgr building or initializing a database for acould be affected by the changes.

scribing a system’s or item’s functional, in-new system. Normally associated with con-

teroperability, and interface characterisiegsion requirements or parallel testing. Release

and the verification required to demonstrate A configuration management action whereby

98 DA PAM 73-7 « 25 July 1997



a particular version of software or documena group, by the appropriate configuratiaith the code and data entities (routines, pro-

tation is complete and available for a specificontrol board IAW MIL-STD-973. cedures, database, data files, etc.) that imple-

purpose (e.g., released for test). (Reference ment them or with the computer files

MIL-STD-973) Software development containing those entities. (Reference MIL-
A set of activities that results in softwareSTD-498)

Representative sample products. Software development may include

For a program using an incremental acquishew development, modification, reuse, reenStatement of work (SOW)

tion strategy, the representative sample is thfineering, maintenance, or any other activi® statement of contract requirements that is

increments that will be used as the basis fortées that result in software products. used for defining and achieving program

fielding decision. The chief characteristic of goals. The SOW provides the basic frame-

these increments is that they must constitu®oftware development file (SDF) work for a particular effort. It is a document

a self-sufficient package, i.e., they can stand repository for material pertinent to the deby which all nonspecification requirements

alone. velopment or support of a particular body ofor developer efforts must be established and
software. Contents typically include (eitherdefined either directly or with the use of spe-

Required operational characteristics directly or by reference) considerations, racific cited documents.

Qualitative and quantitative system performtionale, and constraints related to require-

ance parameters, proposed by the user affknts analysis, design, and implementatiortalic analysis
approved by the Army, that are primary indigeveloper internal test information; afgdirect examination of the form and struc-

cators of a system’s capability to accomplisRchedule and status information. ture of a product without executing the prod-
its mission (operational effectiveness) and to uct. It may be applied to requirements,
be supported (operational suitability). Rsvftware development library (SDL) design, or code.

quired operational characteristics are usuallg controlled collection of software, doc

tested and evaluated by operational testingientation, other intermediate and final soft%tftess? vtvﬁct:h exercises code up to. includin
and evaluation to ascertain achievement fare products, and associated tools A beyond all stated limits in r:())rd(’er to exeg

approved goals and thresholds for thgggcedures used to facilitate the orderly desc, o aspects of the system (e.g.. to include
characteristics. velopment and subsequent support hardware, software, and commuﬁi(':’ations) Its
software. y ' '

Required technical characteristics purpose is to insure that response times and
Quantitative system performance parameteiofrware engineering environment (SEE) storage capacities meet requirements.

approved by the Army management that arghe fagilities, hardware, software, firmware, uoblemental site test

selected as primary indicators of technigicedures, and documentation needed?é Fi)ng conducted on systems that execute in
achievement. These might not be diregiform software engineering. Elements Mayhtiple hardware and operating system envi-
measures of, but always should relate 10 @cluded, but are not limited to CASE toolSyonments or for conditions/functions not

systervs_capanity o tgegg”:ugsorrég”"S‘ejcompilers, assemblers, linkers, loaders, opefaadily available at a primary test site. (Ref-
X . > " “*ating systems, debuggers, simulato _
quired technical characteristics usually g Sy a9 éfence AR 73-1)

’ lators, documentation tools, and database
tested and evaluated to ascertain approy,

PP agement systems. Supportability
goals and thresholds for these characteristics. . The degree to which a system can be main-
Software test environment tained or sustained in an operational

Requirements trace e . ;
. - The facilities, hardware, software, firmware,
Assuring requirements flow from the unsg environment.

ificati th h desi d imol |rocedures, and documentation needed to
speciiications through design and Implemenyq ro qualification, and possibly other, tesSystem change package
tation of the product.

ting of software. Elements may include buA group of modifications documented on
Right-of-baseline (ROB) are not limited to simulators, code analyzerﬁCPs which are packaged and implemented
igst case generators, and path analyzers, aghdring post deployment phase.

The automated process of building a databa: : .
may also include elements used in the soft-

from LOB products, or the initialization of

o i ot g ware engineering environment. System decision paper

I:]ee\l’\l’l f"zzs'gtcr?eﬂlé%ed f(t)r: t2§nf|r:t t.'g;]e' Nor- g 9 The primary document used to obtain
mentys or paralle teV\s/‘I[ing Version requite q  are qualification test (SQT) MAISRC approval for information systems.

' Independent developmental test conducted diSO contains information comparable to the
Simulation a target system, but normally not in an operd/ISCR CRLCMP.

i i iwfonal environment. )

The process of conducting experiments witfonal environment System post deployment review (SPR)
a model for the purpose of understanding the A review conducted after deployment of the

behavior of the system. Simulations may bgoftware transition .
dynamic, engineering (scientific), enviro_-ﬁhe set of activities that enables responsi
mental, instruction level, statement level, an§fy for software development to pass from
system level. For AIS, simulation entaf§€ organization, usually the organizatigny.., specification

summary files to simulate an internal or exihat performs initial software development, 10 gy stem level requirements specification. A

bif_nitial system to evaluate how well the opera-
mtional system is satisfying user requirements.

ternal interface input. another, usually the organization that Wiliem specification may be a system/subsys-

perform software support. tem specification, prime item development
Software acceptance test (SAT) . specification, or critical item development
A operational test of a new system gpftware unit specification). (Reference MIL-STD—-498)

changes to a deployed system, directed by & element in the design of a CSCI; for
independent tester and conducted in a fiel@xample, a major subdivision of a CSCI, ararget system
environment using a production database arf@mponent of that subdivision, a class, obsyite of hardware, or hardware and software

executed on target hardware. ject, module, function, routine, or databasegesignated as the operational configuration of
Software units may occur at different levelghe system.
Software change package (SCP) of a hierarchy and may consist of other soft-

One or more changes which have been apsare units. Software units in the design mafest and evaluation master plan (TEMP)
proved and scheduled for implementation, asr may not have a one-to-one relationshifhe key management tool for control of the

DA PAM 73-7 « 25 July 1997 99



integration of all T&E requirements for eachAo
acquisition effort and is used by decision reeperational availability
view bodies. (Reference DODI 5000.1, DOD
5000.2-R) AAE

Army Acquisition Executive
Testbed
A system representation consisting partiaII%CAT__
of hardware and/or software and partially oficquisition category
computer models or prototype hardware and CWP

or software.
actual cost of work performed

Test hooks

Software logic integrated into a system tc{'\lN | bility N K
facilitate extraction of data to support tesz‘ rmy Interoperability. Networ
and analysis. AlS

Test IPT automated information system
Established by the program sponsor upon regyQ

ceipt of the draft operational requiremegtgiitional operational issues
document or mission needs statement. This is

the primary group which facilitates integra-AQP

tion of T&E requirements and prepares th@automation quality plan
TEMP.

ASARC
Unit testing Army Systems Acquisition Review Council
The lowest level developer test of software.

ASDP
User or operational tests
A system level test performed by a test activ-
ity independent of the developer or the PMAT.CQM
The objective of operational testing is to exAviation and Troop Command
amine the entirety of the system and is per-_l_E
|

formed by users in an operation t ted test . i
environment. automated test equipmen

ATIRS

Validation o .
The process of evaluating software to detefgrmy test incident reporting system

mine compliance with specifiegcowp
requirements. budgeted cost of work performed

Verification BCWS
The process of evaluating the products of gydgeted cost of work scheduled
given software development activity to deter-
mine correctness and consistency WBWMTF
respect to the products and standards pr@enchmark test files
vided as an input to that activity.
CASE
Version computer aided software engineering
An identified and documented body of soft-
ware. Modifications to a version of softwareCBTDEV
(resulting in a new version) require configucombat developer
ration management actions by the developer

the Government or both. (Reference MIL-CDRL . .
STD-973) contract data requirements list

Walk-through CEPT .

An informal, step-by-step review of a soft-concept evaluation program test
ware product during development (i.e., pro;
gram code, test scenario, functional desig
which allows feedback from other members
of the development team to the creator of they

particular product being reviewed. Carnegie Mellon University

apability maturity model

Section Il colIC

Special Abbreviations and Terms critical operational issues and criteria
This publication uses the following abbrevia-

tions, brevity codes, and acronyms not concOTS

tained in AR 310-50. commercial off-the-shelf

100 DA PAM 73-7 « 25 July 1997

accelerated software development process

CPI
cost performance index

CPM
computer programming manual

CRISD
computer resources integrated support
document

CRLCMP
computer resources life cycle management
plan

CRMP
computer resources management plan

CRU
computer resource utilization

CRWG
computer resources working group

C/sCsC
cost/schedule control systems criteria

CsSClI
computer software configuration item

CSE
Center for Software Engineering

CSOM
computer system operator's manual

Csu
computer software unit

DAA
designated accreditation authority

DAB
Defense Acquisition Board

DBDD
database design description

DEVLIB
development library

DIL
Digital Integration Laboratory

DISC4

Director of Information Systems for Com-
mand, Control, Communications, and
Computers

DODISS
Department of Defense Index of Specifica-
tions and Standards

DTRR
developmental test readiness review

DTRS
developmental test readiness statement

ECP-S
engineering change proposal - software



EIA
Electronic Industries Association

IRS NDI
interface requirements specification nondevelopment item
ISC OCD
Information Systems Command operational concept description
ISEC OMS/MP
Information Systems Engineering Command@perational mode summary/mission profile
V&V OPTE(_: _
independent verification and validation Operational Test and Evaluation Command
JITC ORD .
Joint Integrated Test Center operational requirements document
aT oTP
joint test outline test plan
KPA OTRR
K operational test readiness review
ey process area

OTRS
LCSEC ; :
. . . operational test readiness statement
Life Cycle Software Engineering Center P
LEA PDL

rogram design language
Logistics Evaluation Agency prog g guag

PDSS
LOB ) post deployment software support
left-of-baseline

PPQT
LUT pre-production qualification test
limited user test

PR
MAIS problem report
major automated information system

QIO

MAISRC

Major Automated Information System Re-
R

view Council

MANPRINT
manpower and personnel integration

MATDEV
materiel developer

MCCR
mission critical computer resources

MDAP
major defense acquisition program

MEDCOM
Medical Command

MICOM
Missile Command

mission needs statement

Materiel Release Review Board

EUE

early user experimentation

EUT

early user test

EUTE

early user test and experimentation
FAT

first-article test

FCA

functional configuration audit

FD

functional description

FDE

force development experiment
FD/SC

failure definition/scoring criteria
FDT

force development test

FOT

follow-on operational test

FP

functional proponent

FQT

formal qualification test

FSM

firmware support manual

GCCSs

Global Command and Control System
HWCI

hardware configuration item

IAP

independent assessment plan

IAR

independent assessment report
IDD

interface design description, interface design
document

IEC

International Electrotechnical Commission MNS
IEEE

Institute of Electrical and Electronid4RRB
Engineers

IMA

information mission area

10T
initial operational test

MSCR
materiel system computer resources

NBS
National Bureau of Standards

DA PAM 73-7 « 25 July 1997

Quality Improvement Office

OB
right-of-baseline

RRR
RAM rationale report

SCMP
software configuration management plan

SCOM
software center operator manual

SDC-L
Software Development Center - Lee

SDC-W
Software Development Center - Washington

SDL
software development library

SDT
software development test

SEE
software engineering environment

SEI
Software Engineering Institute

SER
system evaluation report

101



SIOM TQM

software input/output manual total quality management
SLOC UAT

source line(s) of code user acceptance test
SMERFS UM

Statistical Modeling and Estimation of Relia-user manual
bility Functions for Software

us
SMMP software unit specification
system MANPRINT management plan

VDD
SPCR version description document
software problem/change report

V&V
SPI verification and validation
schedule performance index

WIPT
SQA working-level integrated product team

software quality assurance

SQPP
software quality program plan

SRTM
software requirements traceability matrix

SRS
software requirements specification

SSDD
system/segment design document, system/
subsystem design description

SST
supplemental site test

STD
software test description standard

STP
software test plan

STR
software test report, software trouble report

STrP
software transition plan

SVD
software version description

S/IW
software

TAFIM
technical architecture framework for informa-
tion management

T&E
test and evaluation

TEMP
test and evaluation master plan

TEXCOM
Test and Experimentation Command

TIR
test incident report

102 DA PAM 73-7 « 25 July 1997



Index Engineering change proposal (ECP), 9-2  Definition and purpose, 3-7
This index is organized alphabetically Bygineering change proposal - software Design stability, affect on, 10-13
topic and subtopic. Topics and subtopics are (ECP-S), 6-43, 8-4, 9-5, 10-12 Operational use of, 3—-7

identifed by paragraph number and appendif\éailure definition/scoring criteria, 6—42 Refining requirements, use in, 3-7, 10-11,

(when appropriate). 6-50, 10-18 10-12
Abbreviations and terms, 1-3 Fault profiles metric, 10-17 Quality assurance, 3-10, 8-6
A?fsl?rg'ieL;j?’s%fiv;ire development process, Independent verification and validation 8&8:&22;322”’51_56’5__22’ 4-4,6-8, 6-15
Acquisition category, 1-9, 3-3, 4-3, 5-6, (IV&V). See Verification and validation _ - '
10-2 Inspection, 1-9, 3-12, 8-6 Regression testing _
Acquisition strategy Integrated product team (IPT), 1-1, 1-9,  Emergency changes, requirements for, 9-8
Development activities, affect on, 5-2, 6-2, 1-11, 3-2, 3-3, 4-6, 8-5 Formal tests, requirements for, 6-46, 6-54
7_2 82 Computer resources IPT, 4-6, 5-9 So_ftware problem/change reports, resolu-
Opera’tional tests, 1-11 Test IPT, 4-6, 5-8, 641, 6-49, 9-7 tion of, 10—;7 N _
Software development strategy, 3-6 Interoperability Software requirements traceability matrix,
Test and evaluation considerations, 3—®oftware T&E considerations, 1-10, 1-11 use for, 10-11 _
4-6 ' Requirements, evaluating, 5-31, app B Testing progress metrics, affect on, 10-15,
System testing, 6-42, 6-50 10-16
Baseline, 8-4 Evaluating system, 6-43, 6-46, 6-51  Reliability metric, 10-18
Allocated, 5-40, 8-4 Materiel release, 7-11 Requirements stability metric, 10-12
Design, stability of, 10-13 Retesting in PDSS, 9-7 Requirements traceability metric, 10-11
Faults in software, 10-17, 10-18 Reuse
Formal tests, changes to software, 6-4MAIS quarterly report, 8-9, 10-2, 10-21 "\iA|S assessment of, 10-21
6-46, 6-50, 6-54 Manpower metric, 10-19 Software development strategy, component
Formal tests, software, 6-41, 6-49 Mate_rlel release, 4-4, 7-2, 7-6, 7-11, 7-16 of, 3-6, 5-9
Functional, 5-33, 8-4 Metrics . Software requirements aspects, evaluating,
Product, 6-42, 7—2, 8-2, 8-4, 9-5 Applicable to software activity, 5-11, 5_38
Requirements, changes in, 10-15, 10-20 5-18, 5-25, 5-32, 5-39, 5-46, 6_gs.ystem design aspects, evaluating, 5-31,
Breadth of testing metric, 10-15 3—36'7 61—723' 6-30, 6-37, 6-44, 6-52,715 13 10-14
Capablility maturity model, 1-9, 10-10 Categbries of 10-3 Sy5$_t§£n requirements aspects, evaluating,
Complexity metric, 10-14 Development planning for, 5-9, 10-3 e
Computer resource utilization metric, 10-9 througF;] 10_5,papp B g Test materials in PDSS, 9-8

Risk management
Acquisition strategy, selecting, 3—-3
Activity, 8-2
Continuous evaluation, 1-7

Computer resources life cycle management  Relationship to T&E, 3-9

plan (CRLCMP), 5-15, 7-14, 10-19  Minimum acceptable operational perform-
Preparing and maintaining, 4-6, 5-9, 8-2 ance requirements, 5-8

Configuration control, 8-4, 8-7 Modeling and simulation, 3-2, 3-13, 5-10, ;
Configuration control board (CCB), 8-4, 10-18 Formal reviews, 5-24, 5-31, 5-38, 5-45,
10-12 . 6—_22, 6-36, 8-8
Configuration management (CM), 3-10,Nondevelopment items _ Metrics, 3-2, 10-2
8-4 Material release considerations, 7-11 Reporting, 8-8, 8-9
CM organization, 1-6, 4-3, 44 Operational test bed, components of, 6-54 Development planning, 5-9
Documentation, 5-9, 8—2 Development strategy, components of, 3-3, Software T&E, 1-5, 3-1, 3-2
Readiness review considerations, 6-42, 36, 5-24, 5-31, 5-38 i —
6-50 Retesting in PDSS, 9-7 ggzﬁﬂg/le metric, 10-8
Continuous evaluation (CE), 1-6, 1-7 Unique T&E considerations, 3-6 Accreditation, 3-2, 3-8, 6-50
Activities, 1-8, 1-9 N Operational mode summary/mission pro-  Certification, 3-2, 3-8, 6-42, 6-50
Activities, fielding and transition, 7-8, fjle (OMS/MP), 10-9, 10-18 Fielding and transition, 7-8, 7-16
7_—:_L_6 Poli Retesting in PDSS, 9-7
Activities, pretest, 5-10, 5-17, 5-24, 5-31; (?A'Cy isit ‘ 1-13. 10-2 System design aspects, evaluating, 5-31
5-38, 5-45 cquisition retorm, 1-—15, 10- System/software requirements aspects,
Activities, test, 6-8, 6-15, 6-22, 6—29Basis of software T&E, 1-4, 3-2 evaluating, 5-24, 5-38
6-36, 6-43, 6-51 Continuous evaluation, 1-1, 5-7 Test program considerations, 3-4, 3-5,
Objective, 1-7 Metrics, 10-2 6-43, 6-51
Software T&E, factors in, 1-12, 3-2, 44 Progress reporting. See MAIS quarte8ygyare change package (SCP), 9-2
Corrective action system, 8-7, 10-12, _report Determining independent evaluation sup-
10-17, 10-18 Testing, 1-1, 1-4, 6-46, 6-54 port for, 9-7
Cost metric, 10-7 Post deployment software support (PDSS), ppgs T&E strategy, 9—4
Critical operational issues and criteria 9-1, 9-2 Software development activities
(CaIC) Agent, 4-3, 4-6, 6-42, 7-2 Corrective action, 8-7, 10-7
Documenting, 5-8 Agent activities, 7-8, 6-46, 6-50, 9-4¢cgc| qgualification testing, 6-18 through
Evaluating, 6-50, 6-51 9-8, 10-11 6-24, 10-7
Retesting in PDSS, 9-7 Deficiencies, ECP-Ss and SCPS, 9-%gcyHwCl integration and testing, 6-25
Critical technical parameters through 9-5. See also Engineering through 6-31, 10-7
Documenting, 5-8 change proposal - software; Softwarey,in reviews, 8-8
Evaluating, 640 _change package Planning and oversight, 5-4 through 5-12,
Retesting in PDSS, 9-7 'C-)'fe C>t’_0'e F*:ast?, 1-4, 5—54 ot 10-7
erational testing in, 6-54, 9— - ; .
Depth of testing metric, 10-16 Prot%types 9 Software configuration management, 8-4,
Design stability metric, 10-13 S ) . 10-7, 10-10. See also Configuration
' . Capability demonstrations, use in, 3-7, management
Development progress metric, 10-20 5-44

Software design, 5-41 through 5-47, 10-7

DA PAM 73-7 « 25 July 1997 103



Software development environment, 5-13,
10-7, 10-9
Software fielding, 7-4, 10-7
Software implementation and unit testing,
6—4 through 6-10, 10-7
Software product evaluation, 8-5, 10-7
Software quality assurance, 8-6, 10-7. See
also Quality assurance
Software requirements analysis, 5-34
through 5-40, 10-7
Software transition, 7-12 through 7-18,
10-7
System design, 5-27 through 5-33, 10-7
System developmental testing, 6-39
through 6-46, 10-15
System operational testing, 6—47 through
6-54, 10-15
System qualification testing, 6—32 through
6-38, 10-7, 10-15
System requirements analysis, 5-20
through 5-26, 10-7, 10-12
Unit integration and testing, 6-11 through
6-17, 10-7, 10-20
Software development plan, 5-9
Software engineering environment metric,
10-10
Software faults. See Software problems/
failures
Software problems/failures
Categories, 2-2, 8-7, 10-17
Criteria for dedicated operational T&E,
6-50, 6-54, 10-17
Priorities, 2-2, 8-7, 10-17
Problem/change reports (PCRs), 5-10,
6-42, 6-46, 6-50, 6-54, 10-17, 10-18
Test incidents reports (TIRs), 2-2, 6-42,
6-46, 6-50, 6-54, 8-7, 10-18
Software maintainability evaluation, 6—43,
6-46, 6-50, 6-51, 7-16
Software requirements traceability matrix
(SRTM), 10-11
Software test plan, 5-8

Test
Independence in, 1-10, 3-8, 4-4, 4-5
Methods, 3-11 through 3-15, 10-14,
10-16
Requirements, relationship to, 1-10, 1-11
Strategy, incremental, 1-10
Software, 1-10, 1-11, 2-2, 3-1, 3-2, 3-4.
See also Software development activities
Software complexity considerations,
10-14, 10-16
System, 1-10, 1-11, 2-2, 3-2, 3-4, 3-5.
See also Software development activities
Test and evaluation master plan (TEMP)
Documenting, 5-8
Exit criteria, 5-8, 8-8
Preparing, 4-6
Validating requirements from, 6—40, 6-41,
6-43, 6-48, 6-49, 6-51, 10-11

Users’ functional description (UFD), 2-2,
5-6, 10-11, 10-15

Verification and validation (V&V),
Development planning, 5-9, 8-2
V&V organization 1-6, 4-4

104

DA PAM 73-7 « 25 July 1997



Unclassified PIN 075103-000



USAPA

ELECTRONIC PUBLISHING SYSTEM
TEXT FORMATTER ... Version 2.61

PIN: 075103-000
DATE: 06-21-99
TIME: 15:45:43

PAGES SET: 108

DATA FILE: p73.fil
DOCUMENT: DA PAM 73-7
DOC STATUS: NEW PUBLICATION



